Pré-Publication, Document De Travail Année : 2024

Scheduling with lightweight predictions in power-constrained HPC platforms

Résumé

With the increase of demand for computing resources and the struggle to provide the necessary energy, power-aware resource management is becoming a major issue for the High-performance computing (HPC) community. Including reliable energy management to a supercomputer's resource and job management system (RJMS) is not an easy task. The energy consumption of jobs is rarely known in advance and the workload of every machine is unique and different from the others. We argue that the first step towards properly managing power is to deeply understand the power consumption of the workload, which involves predicting the workload power consumption and exploiting it by using smart power-aware scheduling algorithms. Crucial questions are (i) how sophisticated a prediction method needs to be to provide accurate workload power predictions, and (ii) to what point an accurate workload's power prediction translates into efficient power management. In this work, we proposed a method to predict and exploit HPC workloads power consumption with the objective of reducing the supercomputers power consumption, while maintaining the management (scheduling) performance of the RJMS. Our method exploits workload submission logs with power monitoring data, and relies on a mix of lightweight power prediction methods and a classical EASY Backfillling inspired heuristic. Then, we model and solve the power capping scheduling as a greedy knapsack algorithm. This algorithm improves the Quality of Service and avoids starvation while keeping the solution lightweight. We base this study on logs of Marconi 100, a 980-node supercomputer. We show using simulation that a lightweight history-based prediction method can provide accurate enough power prediction to improve the energy management of a large scale supercomputer compared to energy-unaware scheduling algorithms. These improvements have no significant negative impact on performance.
Fichier principal
Vignette du fichier
Energumen_Scheduling_Jobs_Energy.pdf (866.9 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04747713 , version 1 (22-10-2024)

Licence

Identifiants

  • HAL Id : hal-04747713 , version 1

Citer

Danilo Carastan-Santos, Georges da Costa, Igor Fontana de Nardin, Millian Poquet, Krzysztof Rzadca, et al.. Scheduling with lightweight predictions in power-constrained HPC platforms. 2024. ⟨hal-04747713⟩
191 Consultations
62 Téléchargements

Partager

More