Communication Dans Un Congrès Année : 2024

Combining Statistical Depth and Fermat Distance for Uncertainty Quantification

Résumé

We measure the out-of-domain uncertainty in the prediction of Neural Networks using a statistical notion called "Lens Depth" (LD) combined with Fermat Distance, which is able to capture precisely the "depth" of a point with respect to a distribution in feature space, without any distributional assumption. Our method also has no trainable parameter. The method is applied directly in the feature space at test time and does not intervene in training process. As such, it does not impact the performance of the original model. The proposed method gives excellent qualitative results on toy datasets and can give competitive or better uncertainty estimation on standard deep learning datasets compared to strong baseline methods.
Fichier principal
Vignette du fichier
LD_Fermat_neurips_20_12.pdf (7.7 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
licence

Dates et versions

hal-04851165 , version 1 (20-12-2024)

Licence

Identifiants

  • HAL Id : hal-04851165 , version 1

Citer

Hai-Vy Nguyen, Fabrice Gamboa, Reda Chhaibi, Sixin Zhang, Serge Gratton, et al.. Combining Statistical Depth and Fermat Distance for Uncertainty Quantification. The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024), Dec 2024, Vancouver, Canada. ⟨hal-04851165⟩
36 Consultations
10 Téléchargements

Partager

More