Communication Dans Un Congrès Année : 2024

SlideCraft: Synthetic Slides Generation for Robust Slide Analysis

Résumé

The increasing amount of slide presentations in various sectors has amplified the need for effective slide layout and semantic analysis. However, we found that current slide datasets contain inconsistencies, mislabels, and incomplete annotations. Using them as a basis for developing deep learning-based slide analysis models could lead to models that are not robust and suboptimal. Addressing these challenges, we introduce SlideCraft, a tool for creating synthetic slide datasets that imitate real-world presentations. This tool overcomes the drawbacks of existing datasets by allowing users to create balanced, diverse, and accurately annotated slide data. We demonstrate SlideCraft's efficacy in enhancing slide layout analysis algorithms, focusing on its capability to improve dataset quality and object detection performance. Our code and a demo can be found at this address.
Fichier principal
Vignette du fichier
ICDAR2024_SlideCraft.pdf (9.07 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04757974 , version 1 (29-10-2024)

Identifiants

Citer

Travis Seng, Axel Carlier, Thomas Forgione, Vincent Charvillat, Wei Tsang Ooi. SlideCraft: Synthetic Slides Generation for Robust Slide Analysis. International Conference on Document Analysis and Recognition, Aug 2024, Athènes, France. pp.79-96, ⟨10.1007/978-3-031-70533-5_6⟩. ⟨hal-04757974⟩
151 Consultations
10 Téléchargements

Altmetric

Partager

More