DISPERSION FOR THE WAVE AND SCHRÖDINGER EQUATIONS OUTSIDE A BALL AND COUNTEREXAMPLES - Réseau de recherche en Théorie des Systèmes Distribués, Modélisation, Analyse et Contrôle des Systèmes
Pré-Publication, Document De Travail Année : 2024

DISPERSION FOR THE WAVE AND SCHRÖDINGER EQUATIONS OUTSIDE A BALL AND COUNTEREXAMPLES

Oana Ivanovici
Gilles Lebeau
  • Fonction : Auteur
  • PersonId : 857162

Résumé

We consider the wave and Schrödinger equations with Dirichlet boundary conditions in the exterior of a ball in $R^d$. In dimension $d = 3$ we construct a sharp, global in time parametrix and then proceed to obtain sharp dispersive estimates, matching the $R^3$ case, for all frequencies (low and high). If $d ≥ 4$, we provide an explicit solution to the wave equation localized at large frequency $1/h$ with data $\delta_{Q_0}$, where $Q_0$ is a point at large distance s from the center of the ball : taking $s \sim h^{−1/3}$, the decay rate of that solution exhibits a $(t/h)^{d−3}/4$ loss with respect to the boundary less case, that occurs at $t \sim 2s$ with an observation point being symmetric to $Q_0$ with respect to the center of the ball (at the Poisson Arago spot). A similar counterexample is also obtained for the Schrödinger flow.
Fichier principal
Vignette du fichier
Non disponible Dispersion for the wave and Schrodinger equations.pdf (231.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03060388 , version 1 (06-12-2024)
hal-03060388 , version 2 (09-12-2024)

Identifiants

Citer

Oana Ivanovici, Gilles Lebeau. DISPERSION FOR THE WAVE AND SCHRÖDINGER EQUATIONS OUTSIDE A BALL AND COUNTEREXAMPLES. 2024. ⟨hal-03060388v1⟩
215 Consultations
78 Téléchargements

Altmetric

Partager

More