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Abstract—Brain-Computer Interfaces (BCI) face a great chal-
lenge: how to harness the wide variability of brain signals from a
user to another. The most visible problem is the lack of a sound
framework to capture the specificity of a user brain waves. A
first attempt to leverage this issue is to design user-specific spatial
filters, carefully adjusted with a lengthy calibration phase. A
second, more recent, opening is the systematic study of brain
signals through their covariance, in an appropriate space from
a geometric point of view. Riemannian geometry allows to
efficiently characterize the variability of inter-subject EEG, even
with noisy or scarce data. This contribution is the first attempt
for SSVEP-based BCI to make the most of the available data
from a user, relying on Riemannian geometry to estimate the
similarity with a multi-user dataset. The proposed method is built
in the framework of transfer learning and borrows the notion of
composite mean to partition the space. This method is evaluated
on 12 subjects performing an SSVEP task for the control of
an exoskeleton arm and the results show the contribution of
Riemannian geometry and of the user-specific composite mean,
whereas there is only a few data available for a subject.

Index Terms—Brain-computer interface, transfer learning,
Riemannian geometry, SSVEP.

I. INTRODUCTION

Brain-computer interfaces (BCI) endow a user with the
ability to interact with a system, such as a physical interface or
an application, based on the brain activity [1]. These BCI are
of prime interests for users with physical disabilities or with
difficulties to interact physically with a system. Brain activity
is decoded in real-time to control or to provide insight on the
user intentions and decisions. To ensure the portability and a
reduced cost for BCI system, a common choice is to rely on
electroencephalography (EEG) for recording brain activity [2],
or in a lesser extend functional near-infrared spectra [1]. The
EEG is most appropriate to detect fast temporal variations
or transient events, but is subject to the volume conduction
effect [3], mixing cerebral sources and smoothing spatial
information.

The strongest limitation for a wide adoption of BCI, and
the emergence of out-of-the-lab applications, is known as the
BCI deficiency problem [4]. This effect is visible for circa
15 to 30% of the BCI users, who achieve a deceptive near-
chance performance, and is not yet correlated with a specific
psychological or neurological traits. Some tentative solutions
may lie in a better protocol design, which could benefit

from advances in human-machine interfaces [5]. Still, one of
the main sources of this problem is the important variations
between users, and for a given user, the variation from day
to day, and in some case from hour to hour. To mitigate this
issue, most of the existing approaches rely on a calibration
phase. During this calibration, the various preprocessing and
filtering steps could be tailored to the specific brain waves
of a user. Nonetheless, this calibration is a source of fatigue,
frustration and could induce loss of performance for the real
task to come [6], [7].

The calibration phase should be performed before each
session and is common to all neurobiological signals used
for BCI. Existing BCI protocols rely mostly on Event-Related
Potentials (ERP), Event-Related Desynchronization and Syn-
chronization (ERD/S) and Steady-State Visually Evoked Po-
tentials (SSVEP) [1]. The ERP is a transient activation induced
by an exogenous event, resulting often from the combination
of several cognitive components being activated concurrently.
Using the oddball paradigm, it is possible to induce a visible
ERP component 300 ms after the apparition of an awaited
stimulus, called P300 and notoriously employed for BCI
spelling tasks. Following another paradigm, the ERD/S has
been mostly employed in motor imagery tasks for BCI, where
the (de)synchronization results in a change of amplitude in
a given frequency band and is related with the movement
preparation of a body part. The SSVEP is a brain wave
exhibited as a response from a repetitive stimulation with a
fixed frequency. The most common practice being to generate
visual patterns that are “blinking”, which induce a cortical
activity in visual areas synchronized with the stimulation. This
paper focus on the visual SSVEP for the experimental part,
even if the general approach could be adapted to any type of
BCI.

The most common approach for all the BCI paradigms is
to rely on spatial filters to enhance the signal of interest and
to remove bad and noisy electrodes. These spatial filters allow
to project the sensor data in a surrogate sensor space, where a
proper combination of electrodes augment the signal to noise
ratio. The XDAWN spatial filter [8] focuses on maximizing
the signal-to-signal plus noise ratio by finding components
best correlated with the ERP timings. With ERD, the common
spatial patterns [9] is a popular and efficient approach to find
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spatial filters that maximize the variance change during the
ERD. For SSVEP, the canonical correlation analysis [10], [11]
has proven to be a good candidate to compute spatial filters
that maximize the canonical correlation between EEG data and
reference signals of known frequencies. In all those cases, the
spatial filters are also exploited as a dimensionality reduction
technique, by selecting only an appropriate subset of filters.
The correct estimation of those filters requires nonetheless a
large amount of data, both in terms of number of electrodes
and of length of calibration period. The estimation of spatial
filters is especially sensitive to noise and label error, and a
significant part of the literature is focusing on the possibilities
to reduce the adverse effects of noise.

An orthogonal approach of the signal processing behind BCI
is to consider subspaces that include all possible surrogate
sensor space, that is linear transformation of the input signal.
In that case, there is no need to estimate session- and user-
specific spatial filters as they are encompassed in the geometry
of the considered space. One such approach is known as the
Riemannian BCI [12], [13], where spatial covariance matrices
are estimated from the EEG signal and classified in the space
of symmetric and positive-definite matrices. This Riemannian
point of view of the BCI has demonstrated its interests in
several occasions, and is now systematically found in the top
tier submissions in BCI and EEG competitions. The main
challenge is to reformulate the classification problems in the
adequate geometrical space [14], [15]. Even without the need
of estimating spatial filters, a calibration phase is still required
to parametrize the classifier. One possibility to reduce the
calibration phase is to rely on a smart initialization, that is
using previously acquired data to produce a fast and precise
parameterization of the classifier.

The contribution of this paper is to propose such smart
initialization, using Riemannian geometry tools in a transfer
learning framework. This is the first contribution attempt
for SSVEP-based BCI. Section II introduces the geometric
formalization of the EEG signal processing and explains how
the classification is achieved. In Section III, the reduction of
the calibration phase is formulated from a transfer learning
point of view and novel approaches are introduced. Section IV
demonstrates the interest of the proposed approaches on a real
SSVEP dataset. Section V concludes this paper.

II. RIEMANNIAN BCI
In the following, we will consider a differentiable manifold

M characterized by a Riemannian metric, that is a collection
of inner products on the tangent space TΣM varying smoothly
at each point Σ of the manifold. Endowed with this inner
product, it is possible to compute the length of any curve.
The shortest curve between any two points of the manifold
is called a geodesic γ(t). The length of the geodesic curve
between Σ1 and Σ2 is the Riemannian distance δ:

δ(Σ1,Σ2) =
∥∥∥log(Σ

− 1
2

1 Σ2Σ
− 1

2
1 )

∥∥∥
F
. (1)

It is known as the affine-invariant Riemannian (AIR) dis-
tance [16].

The notion of mean (or center of mass) of a set of points
Σi can be extended in the context of Riemannian manifold,
called Karcher (or Fréchet) mean. In that case, the mean
Σ̄ is the point minimizing the dispersion on the manifold,
captured by the square of the distances between Σ̄ and Σi.
This optimization problem does not have a closed form and is
written as:

Σ̄ = µ({Σi}) = arg minΣ

N∑
i=1

δ2(Σi,Σ) . (2)

There is an exact solution for N = 2, but for N > 2 it should
be estimated iteratively [17].

In this paper, we will consider the weighted mean µw,
where a coefficient wi is associated with each point Σi of
the considered set, with

∑
i wi = 1 [17]:

Σ̄ = µw ({wi}; {Σi}) = arg minΣ

N∑
i=1

wi δ
2(Σi,Σ) . (3)

The classifier Minimum Distance to Mean (MDM), intro-
duced in [14], is presented for multi-class classification in the
manifold. The covariance matrices of EEG trials are classified
based on their distance to the k = 1 . . .K centers of the classes
Σ̄(k). The predicted class k̂ of the current matrix Σ is defined
as:

k̂ = arg min
k
δ(Σ, Σ̄(k)) . (4)

It is a simple Bayesian classifier, under the hypotheses that
classes have identical dispersion and that it is operating on a
manageable space.

III. PROPOSED APPROACH FOR TRANSFER LEARNING

A. Related works

In BCI the need to transfer learning is important due to
inter-subject variability and inter-session variability. Inter-
subject variability is expressed by the difference of brain
signals recorded from different subjects despite them being
involved in the similar mental activities. This difference is
mostly attributed to anatomical differences among users. Inter-
session variability is visible between distinct recording ses-
sions of a unique subject. This variability is attributed to
changes in the mental states of the user, such as fatigue, and
changes in experimental settings, e.g. electrodes placement,
environment, stimulation.

Exposed to the same stimuli, BCI users do not produce
similar EEG response. On top of user-specific brain waves,
changes induced by different environmental conditions should
also be taken into account. These cross-session changes have
a lesser impact in Riemannian framework, as congruence
invariance allows to reduce the sensitivity to spatial filtering of
EEG [13]. In this work, we focus on cross-subject transfer to
mitigate inter-subject variability [18], [19]. These efforts are
meant to shorten the calibration phase, thus reducing the user
fatigue and discomfort. In a cross-subject transfer perspective,
the source domain is the dataset of all subjects previously

2018 26th European Signal Processing Conference (EUSIPCO)

ISBN 978-90-827970-1-5 © EURASIP 2018 1686



(a) (b) (c)

Fig. 1. Average accuracy value evaluated through grid search for λ and n, for minimum distance to E-MDPM 1(a), R-MDPM 1(b) and R-MDWM 1(c).

recorded, that is all the labeled covariance matrices for differ-
ent users. The target domain is the covariance matrices that
are acquired for a target subject. In the scope of this paper,
we consider that only a few covariance matrices are available
for the target subject.

Let k = 1, . . . ,K be the number of classes and j =
1, . . . , J+1 be the number of subjects. The resting-state class
(no task) will be defined by k = 0. In order to estimate a
model for a target user with few recordings, there are several
possibilities at hand to make the most of source user models. In
our case, the source models are described by the covariance
matrices Σ

(k)
j for a given user and a given class. Our first

approach is to adapt composite mean [20], in the Euclidean
space, to allow transfer from user-to-user. This approach could
be adapted for the curved space of covariance matrices, relying
on Riemannian geometry. The covariance matrices of different
users could be averaged into a unique matrix, hypothesizing
that each existing model contributes equally to estimate a user
model. We called this approach Minimum Distance to Pooled
Means (MDPM). We introduce a more advanced approach,
called Minimum Distance to Weighted Means (MDWM), is to
adjust the influence each model depending on the similarity
between the EEG database and the newly observed EEG.

B. Composite Euclidean Mean

Composite Euclidean Mean is an instance transfer tech-
nique, i.e. re-weighting existing labeled data to be applied on
newly recorded data, inspired from the composite common
spatial patterns method proposed by [20]. It could be seen
as a regularization of the newly observed data from user
i, where the observed covariance matrices are modified to
include information from existing models of users j:

Σ̄
(k)
i = (1− λ)Σ

(k)
i + λ

∑
j 6=i

1

J
Σ

(k)
j . (5)

The obtained Σ̄
(k)
i are then diagonalized in order to obtain

transferred CSP filters [20], [21]. The hyperparameter λ ∈
[0, 1] allows to choose if the centers of class rely more on
the existing data, that is the source domain, or more on newly
acquired data, that is the target domain. With λ = 0, there is
no transfer, only the data acquired from a subject are used.

With λ = 1, this is a calibration-free BCI system as no data
are required from the subject.

C. Minimum Distance to Pooled Means (MDPM)

The former formulation does not take into account the
specific geometry of covariance matrices. The rightmost term
in Eq. (5) could be replaced with a Riemannian mean. The
whole right-hand side could also be written as Riemannian
mean. This geometric formulation could be written as:

Σ̄
(k)
i = µw

(
{1− λ, λ} ;

{
Σ

(k)
i , Σ̄

(k)
w,j

})
, (6)

with Σ̄
(k)
w,j = µ

({
Σ

(k)
j

}
j 6=i

)
.

Even if Eq. (5) has never been used in a MDM based BCI,
a MDM applied after it will be called E-MDPM (Euclidean-
MDPM), and will be considered as the state-of-the-art. MDM
applied with mean from Eq. (6) will be referred to as R-
MDPM (Riemannnian-MDPM)

D. Minimum Distance to Weighted Means (MDWM)

The similarity between two subjects i and j is defined as
the inverse of the AIR distance δ between their covariance
matrices of the resting-state class k = 0:

si,j =
1

s̄i
× 1

δ(Σ
(0)
i ,Σ

(0)
j )

, (7)

where s̄i is a normalization factor integrating all distances to
the subjects of the database:

s̄i =
∑
j 6=i

1

δ(Σ
(0)
i ,Σ

(0)
j )

. (8)

These weights are obtained in an unsupervised way; no labels
are required to estimate this similarity, only a clean recording
of 2min of resting-state.

Taking into account these similarities, it is possible to
rewrite Eq. (6) as a weighted mean:

Σ̄
(k)
i = µw

(
{(1− λ), λ} ;

{
Σ

(k)
i , Σ̄

(k)
w,j

})
, (9)

with Σ̄
(k)
w,j = µw

({
s

(k)
i,j

}
j 6=i

;
{

Σ
(k)
j

}
j 6=i

)
.
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Eq. (5) can also be rewritten taking with similarity measures
as:

Σ̄
(k)
i = (1− λ)Σ

(k)
i + λ

∑
j 6=i

s
(k)
i,j Σ

(k)
j . (10)

Thus, an MDWM applied with means from Eq. (9) will
be called R-MDWM (Riemannian-MDWM), and E-MDWM
(Euclidean-MDWM) when applied with Eq. (10).

IV. RESULTS

A. SSVEP experimental setup and data

The experimental study is conducted on multichannel EEG
signals recorded during a SSVEP-based BCI experiment.
There are 3 groups of 4 LEDs blinking at different frequencies:
F = 3 visual target stimuli blinking respectively at 13, 21 and
17 Hz. A sequence of trials is proposed to the user. When he
do not intend to activate any SSVEP command, this constitutes
the reject class, i.e. reference state or no-SSVEP state. This,
plus the 3 groups of LEDs make a 4-class BCI (K = 4). The
EEG was recorded at a sampling rate of 256 Hz with C = 8
electrodes/channels (PO7, PO3, POz, PO4, PO8, O1, Oz, and
O2).

In a session, 32 trials were recorded: 8 for each visual
stimulus and 8 for the resting-state class. A trial is 4 seconds
long. There were 12 subjects and the number of sessions
recorded per subject varied from 2 to 5. The full description
of the experiment and dataset can be found in [11].

The covariance matrices are estimated from a modified
version of the input signal X ∈ RC×T :

X ∈ RC×T →

Xfreq1
...

XfreqF

 ∈ RFC×T , (11)

where Xfreqf is the input signal X band pass filtered around
frequency freqf , f = 1, . . . , F . The sample covariance matrix
estimator Σ̃scm = 1

CXX
ᵀ is a possible choice, but a shrinkage

estimator [22] could produced a better conditioned estimator
Σ̃skrinkage = κtr(Σ̂scm)IC + (1 − κ)Σ̂scm. In the rest of the
document, we will write Σ to denote matrices estimated with
the shrinkage estimator.

This dataset is accessible at https://github.com/sylvchev/
dataset-ssvep-exoskeleton.

B. Experimental comparison

Four transfer learning approaches are compared: E-MDPM
(Eq. 5) considered as the state-of-the-art, R-MDPM (Eq. 6),
E-MDWM (Eq. 10), and R-MDWM (Eq. 9).

The four approaches are evaluated at different values of λ ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}. The objective of our transfer learning
approaches being to eliminate or reduce the number of training
samples required for the target domain subjects by using data
from source domain subjects, the approaches are also evaluated
with various numbers of available training samples from the
target subject n ∈ {4, 8, 12, 16, 20, 24, 28, 32}.

The target domain is made of a test subject, while the
remaining data from other subjects are used as the source

domain. The number of labeled samples in the target domain
corresponds to n. The classifier is evaluated on unlabeled
samples of the target domain (varying from 32 to 128). For
statistical significance, bootstrapping is used. The classifier is
implemented on 10 bootstraps of the target domain training
data by re-sampling with replacement.

C. Results and discussion

1) E-MDPM and R-MDPM: The results obtained with the
classifier trained as described in Eq. (5) and Eq. (6) over
various λ and n are shown in Fig. 1. It can be seen that
the accuracy is always better when the test subject or target
domain has more label samples (i.e. higher values of n).
Taking class means from the source domain (Σ(k)

j ) improves
the results as λ grows from zero. Although this trend is
observed on all values of n, it is significantly bigger for small
values of n, indicating that, when a subject has very few
training samples available, the composite Riemannian mean
transfer learning approach is a good BCI initialization.

Comparing Fig. 1(a) to Fig. 1(b), it is visible that R-
MDPM, which is consistent with the Riemannian approach,
outperforms E-MDPM. A one way ANOVA analysis shows
significance in this improvement with f-value of over 40 and
corresponding p-value in the order of 10−10. It is therefore
important to consider the fully Riemannian approach of the
composite Riemannian mean introduced in Eq. (6) rather than
the one of Eq. (5).

2) R-MDPM versus R-MDWM: The composite Rieman-
nian mean of Eq. (9) introduces a weight based of a similarity
measure between subjects.

Table I compares the results of R-MDPM and R-MDWM.
For illustration purposes, the value of n is fixed to 12 and on
the value of λ that yields the highest classification accuracy is
considered. To test the statistical significance of the results, a
paired Student t-test is run on the results (across all λ and all
n) of R-MDPM on one side, and R-MDWM on the other side.
The p-values show that these two methods yield significantly
different results, and R-MDWM improves the overall results.

3) Euclidean versus Riemannian, and pooled versus
weighted: A two-way ANOVA is performed on the four meth-
ods, and the interaction between Euclidean/Riemannian mean
and pooled/weighted mean is shown in Fig. 2. It shows that
using remannian mean in transfer learning of class mean (i.e
Eq. (6) and Eq. (9)) significantly improves the classification
performance, with F-value of 103 and equivalent p-value in
the orders of 10−23. On a smaller scale, weighting the data
in the source domain based on their similarity to the target
domain shows a trend in the improvement the performance
(F-value close to 1, and p-value in the order of 0.1).

V. CONCLUSION

This paper proposes a Riemannian transfer learning ap-
proach for SSVEP-based BCI, inspired from composite mean
for instance transfer where a user’s model is combined with
with those of similar subjects. The Riemannian geometry of-
fers a very robust framework for inter-subject transfer learning
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Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5 Sub. 6 Sub. 7 Sub. 8 Sub. 9 Sub. 10 Sub. 11 Sub. 12
Accuracy

E-MDPM 0.619 0.875 0.925 0.756 0.756 0.844 0.808 0.869 0.938 0.641 0.619 0.845
R-MDPM 0.625 0.856 0.944 0.862 0.794 0.844 0.821 0.875 0.812 0.656 0.788 0.842
E-MDWM 0.619 0.881 0.925 0.756 0.762 0.838 0.808 0.869 0.875 0.647 0.625 0.845
R-MDWM 0.625 0.85 0.950 0.881 0.794 0.856 0.829 0.875 0.812 0.659 0.788 0.842

Best λ
E-MDPM 0.0 0.4 0.0 0.0 0.2 0.4 0.0 0.0 1.0 0.2 0.2 0.4
R-MDPM 0.2 0.2 0.8 0.8 0.6 0.6 0.2 0.4 0.6 0.4 0.8 0.2
E-MDWM 0.0 0.4 0.0 0.0 0.2 0.4 0.0 0.0 1.0 0.4 0.2 0.4
R-MDWM 0.2 0.2 0.6 0.6 0.6 0.4 0.2 0.4 1.0 0.4 0.8 0.2

TABLE I
SNAPSHOT OF E-MDPM, R-MDPM, E-MDWM, R-MDWM PERFORMANCES AT n = 12.

Fig. 2. Two-way ANOVA: interactions between Euclidean/Riemannian mean
and pooled/weighted mean.

and we have shown that it outperforms the Euclidean formula-
tion. We introduce two Riemannian approaches, the minimum
distance to pooled means (R-MDPM) and the minimum dis-
tance to weighted means (R-MDWM). The results demonstrate
that taking into account the similarities between subjects yields
significantly better results for almost all considered subjects.
This transfer learning has been applied to SSVEP, but could
be easily used for MI or P300 paradigms.
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