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Local attractivity in nonautonomous
semilinear evolution equations
Abstract:We study the local attractivity of mild solutions of equations in the form u′(t) = A(t)u(t) + f (t, u(t)),
where A(t) are (possible) unbounded linear operators in a Banach space andwhere f is a (possible) nonlinear
mapping. Under conditions of exponential stability of the linear part, we establish the local attractivity of
various kinds of mild solutions. To obtain these results we provide several results on the Nemytskii operators
on the space of the functions which converge to zero at in�nity.
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1 Introduction
From a family of linear unbounded operators (A(t))t∈R+ on a Banach space X, from a function b : R→ X and
from a nonlinear mappings f : R+ × X → X we consider the following evolution equations:

u′(t) = A(t)u(t) (1.1)

u′(t) = A(t)u(t) + b(t) (1.2)

u′(t) = A(t)u(t) + f (t, u(t)). (1.3)

We study the questions of the local attractivity and of the convergence to zero at in�nity of mild solutions of
these equations when their linear part is exponentially stable.

Nowwe describe the contents of the paper. In Section 2we give the notationwhich is used in the paper. In
Section 3we study the properties of theNemytskii operators on the spaces C0(R+, X), the spaces of the contin-
uous functions onR+ which converge toward zero at in�nity. We provide a necessary and su�cient condition
for the continuity of such operators, we provide su�cient conditions for their Fréchet-di�erentiability, and
we also give conditions to ensure that they are Lipschitzian. In the setting of the discrete time, the Nemytskii
operators on the spaces c0(N, X) are studied in [4]. Properties of the Nemytskii operators on other function
spaces are given in [3].
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In Section 4 we establish conditions to ensure that all the mild solutions converge to zero at in�nity.
In Section 5 we provide general conditions to ensure the local attractivity of a general mild solution of

(1.3), after that using conditions on the partial di�erential of f along a givenmild solution, we establish a the-
orem to ensure the local attractivity when this given mild solution is almost periodic, asymptotically almost
periodic, or almost automorphic. In the last result of this section, using the implicit function theorem, we
provide condition to ensure the local attractivity of a given mild solution which converge to zero at in�nity.

2 Notation
When X and Y are Banach spaces, C0(X, Y) stands for the space of the continuous functions from X into Y,
and C0(R+ × X, Y) stands for the space of the continuous functions from R+ × X into Y. C0(R+, X) := {u ∈
C0(R+, X) : limt→+∞ u(t) = 0}. Endowed with the norm ‖u‖∞ := supt∈R+

‖u(t)‖, C0(R+, X) is a Banach space,
[11] (Chapter 7). C1(X, Y) is the space of the continuously Fréchet-di�erentiable functions from X into Y, and
C1(R+ × X, Y) is the space of the continuously Fréchet-di�erentiable functions from R+ × X into Y.

L(X, Y) stands for the space of the linear continuous functions from X into Y.
When A is a linear unbounded operator on X, D(A) is the domain of A. When f ∈ C0(R+ × X, X), when

(U(t, s)t≥s≥0 is a well-de�ned evolution family associated to a family of unbounded linear operators on a Ba-
nach space X, and when, for all x ∈ X, there exists a unique mild solution ux ∈ C0(R+, X) of the Cauchy
problem ((1.3), u(0) = x), ux satis�es

ux(t) = U(t, 0)x +
t∫

0

U(t, s)f (s, ux(s))ds (2.1)

for all t ∈ R+. In such a setting, a mild solution u of (1.3) is so-called locally attractive when there exists
r ∈ (0, +∞) such that

‖x − u(0)‖ ≤ r ⇒ lim
t→+∞

‖ux(t) − u(t)‖ = 0.

A mild solution u is called globally attractive when limt→+∞ ‖ux(t) − u(t)‖ = 0 for all x ∈ X.

AP0(R+, X) denotes the space of the almost periodic functions (in the sense of Bohr) from R+ into X, [1],
[8]. AAP(R+, X) denotes the space of the asymptotically almost periodic functions (in the sense of Fréchet)
from R+ into X, [14]. AA(R+, X) denotes the space of the almost automorphic functions (in the sense of
Bochner) from R+ into X, [8], [9]. Endowed with the norm ‖.‖∞, these three spaces are Banach spaces.

A mapping f : R+ × X → Y is called almost periodic in t uniformly in x when f is continuous and, for
all compact subset K in X, for all ϵ > 0, there exists ` = `(ϵ, K) > 0 such that, for all r ∈ R+, there exists
τ ∈ [r, r + `] satisfying ‖f (t + r + τ, x) − f (t, x)‖ ≤ ϵ for all (t, x) ∈ R+ × K, [13], [3]. The set of such mappings is
denoted by APU(R+ × X, Y).

Amapping f : R+×X → Y is called asymptotically almost periodic in t uniformly in xwhen f is continuous
and, for all compact subset K in X, for all ϵ > 0, there exist T = T(ϵ, K) ≥ 0 and ` = `(ϵ, K) > 0 such that for
all r ∈ R+, there exists τ ∈ [r, r + `] satisfying ‖f (t + τ, x) − f (t, x)‖ ≤ ϵ for all (t, x) ∈ [T, +∞) × K, [14], [3]. The
set of such mappings is denoted by AAPU(R+ × X, Y).

A mapping f : R+ × X → Y is called almost automorphic in t uniformly in x when f (., x) ∈ AA(R+, Y) for
all x ∈ X, and when, for all compact subset K in X, for all ϵ > 0, there exists δ = δ(ϵ, K) > 0 such that, for all
x, z ∈ K, ‖x − z‖ ≤ δ implies |f (t, x) − f (t, z)‖ ≤ ϵ for all t ∈ R+, [3]. The set of such mappings is denoted by
AAU(R+ × X, Y).

B(R) := {x ∈ X : ‖x‖ ≤ R} is the closed ball centered at zero with a radius equal to R.
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3 Nemytskii operators
Let X and Y be two Banach spaces.

Lemma 3.1. Let ϕ ∈ C0(R+ × X, Y). The two following conditions are equivalent.

(i) lim(t,x)→(+∞,0) ϕ(t, x) = 0.
(ii) For all u ∈ C0(R+, X), [t 7→ ϕ(t, u(t))] ∈ C0(R+, Y).

Proof. First we prove the implication ((i)⇒ (ii)). Let u ∈ C0(R+, X). Since u is continuous onR+, we have that
[t 7→ (t, u(t))] is continuous, and since ϕ is continuous, [t 7→ ϕ(t, u(t))] is continuous onR+ as a composition
of continuous functions.
Note that the assertion (i) means:

∀ϵ > 0, ∃Rϵ > 0, ∃ηϵ > 0, ∀t ∈ R+, ∀x ∈ X, (t ≥ Rϵ , ‖x‖ ≤ ηϵ)⇒ ‖ϕ(t, x)‖ ≤ ϵ.

Since limt→+∞ u(t) = 0, we know that:

∀α > 0, ∃βα > 0, ∀t ∈ R+, (t ≥ βα ⇒ ‖u(t)‖ ≤ α).

We arbitrarily �x ϵ > 0 and we set Sϵ := max{Rϵ , βηϵ} > 0. When t ∈ R+ satis�es t ≥ Sϵ then t ≥ Rϵ and
‖u(t)‖ ≤ ηϵ that implies ‖ϕ(t, u(t))‖ ≤ ϵ. And so we have proven that [t 7→ ϕ(t, u(t))] ∈ C0(R+, Y).

Conversely to prove the implication ((ii) ⇒ (i)) we proceed by contradiction, we assume that (ii) holds
and that (i) does not hold. Note that the negation of (i) is the following assertion: ∃ϵ > 0, ∀R > 0, ∀η >
0, ∃t̂(R, η) ∈ R+, ∃x̂(R, η) ∈ X such that t̂(R, η) ≥ R, x̂(R, η) ≤ η and ‖ϕ(̂t(R, η), x̂(R, η))‖ > ϵ.

By induction we build two sequences by de�ning t1 := t̂(1, 1) and x1 := x̂(1, 1), and when n > 1, tn+1 :=
t̂(max{tn+1, n+1}, 1

n+1 ) and xn+1 := x̂(max{tn+1, n+1}, 1
n+1 ). And sowehave built a sequence (tn)n inR+ and

a sequence (xn)n inX such that tn+1 > tn, tn ≥ n, ‖xn‖ ≤ 1
n for all n ∈ N*. Thenwehave ‖ϕ(tn , xn)‖ > ϵ for all n ∈

N*. Using these sequences we build the function ϖ : R+ → X by setting, for all n ∈ N* and for all t ∈ [tn , tn+1],
ϖ(t) := 1

tn+1−tn ((t − tn)xn+1 + (tn+1 − t)xn). Note that ϖ is piecewise a�ne and continuous on R+. Note that, for
all n ∈ N* and for all t ∈ [tn , tn+1], we have ϖ(t) ∈ [xn , xn+1] that implies ‖ϖ(t)‖ ≤ max{‖xn‖, ‖xn+1‖} ≤ 1

n .
When we consider an α > 0, we take nα ∈ N* such that nα ≥ 1

α . When t ≥ tnα then there exists n ∈ N*,
n ≥ nα such t ∈ [tn , tn+1], and then we have ‖ϖ(t)‖ ≤ 1

n ≤ α. That prove: limt→+∞ ϖ(t) = 0. After (ii) we know
that [t 7→ f (t, ϖ(t))] ∈ C0(R+, Y) and then we have limt→+∞ ϕ(t, ϖ(t)) = 0. Since limn→+∞ tn = +∞, we have
limn→+∞ ϕ(tn , xn) = limn→+∞ ϕ(tn , ϖ(tn)) = 0, and since ‖ϕ(tn , xn)‖ > ϵ > 0 for all n ∈ N*, we obtain a
contradiction.

Now we can introduce the following conditions.

(A1) ϕ ∈ C0(R+ × X, Y).
(A2) lim(t,x)→(+∞,0) ϕ(t, x) = 0.

Under these two conditions, after Lemma 3.1 we can de�ne the Nemytskii operator Nϕ : C0(R+, X) →
C0(R+, X) by setting, for all u ∈ C0(R+, X),

Nϕ(u) := [t 7→ ϕ(t, u(t))].

Remark 3.2. When ϕ ∈ C0(X, Y), i.e. ϕ does not depend on t, condition (A2) becomes ϕ(0) = 0 since, using
the continuity of ϕ, we have ϕ(0) = limx→0 ϕ(x) = 0.

Theorem 3.3. Let ϕ : R+ × X → Y be a mapping. Under the conditions (A1) and (A2), we have Nϕ ∈
C0(C0(R+, X), C0(R+, Y)).
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Proof. Using Lemma 3.1, we know that Nϕ is well de�ned. We have yet seen that (A2) means

∀ϵ > 0, ∃Rϵ > 0, ∃ηϵ > 0, ∀t ∈ R+, ∀x ∈ X,
(t ≥ Rϵ , ‖x‖ ≤ ηϵ)⇒ ‖ϕ(t, x)‖ ≤ ϵ.

}
(3.1)

We �x u ∈ C0(R+, X) and ϵ > 0. Since limt→+∞ u(t) = 0 we know that there exists Tϵ > 0 such that (t ≥ Tϵ ⇒
‖u(t)‖ ≤ 1

2ηϵ/2) where ηϵ/2 is provided by (3.1). Let v ∈ C0(R+, X) such that ‖u − v‖∞ ≤ 1
2ηϵ/2). Then, for all

t ≥ Tϵ we have
‖v(t)‖ ≤ ‖u(t)‖ + ‖u − v‖∞ ≤ 2

1
2ηϵ/2 = ηϵ/2.

We set Sϵ := max{Rϵ/2, Tϵ} > 0 where Rϵ/2 is provided by (3.1). And so we have ‖u(t)‖ ≤ ηϵ/2 and ‖v(t)‖ ≤ ηϵ/2
for all t ≥ Sϵ, and then using (3.1) we obtain ‖ϕ(t, u(t))‖ ≤ ϵ

2 and ‖ϕ(t, v(t))‖ ≤ ϵ
2 that implies

‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ ‖ϕ(t, u(t))‖ + ‖ϕ(t, v(t))‖ ≤ 2 ϵ2 = ϵ.

And so we have proven

∃Sϵ > 0, ∀v ∈ c0(R+, X),
‖u − v‖∞ ≤ 1

2ηϵ/2 ⇒ (∀t ≥ Sϵ , ‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ ϵ).

}
(3.2)

After Lemma 3.10 in [3], the Nemytskii operator N1
ϕ : C0([0, Sϵ], X)→ C0([0, Sϵ], Y), de�ned by N1

ϕ(φ) := [t 7→
ϕ(t, φ(t))], is continuous since the restriction of ϕ is continuous on [0, Sϵ] × X. Then the following assertion
holds.

∃δϵ > 0, ∀φ ∈ C0([0, Sϵ], X),
sup

t∈[0,Sϵ ]
‖u(t) − φ(t)‖ ≤ δϵ ⇒ (∀t ∈ [0, Sϵ], ‖ϕ(t, u(t)) − ϕ(t, φ(t))‖ ≤ ϵ).

 (3.3)

Now we set θϵ := max{ 12ηϵ/2, δϵ} > 0. If v ∈ C0(R+, X) satis�es ‖u − v‖∞ ≤ θϵ, then, using (3.2) and (3.3), we
obtain

∀t ∈ [0, Sϵ], ‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ ϵ

and
∀t ∈ [Sϵ , +∞), ‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ ϵ

and consequently we obtain: ∀t ∈ R+, ‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ ϵ. To summarize we have proven

∀u ∈ C0(R+, X), ∀ϵ > 0, ∃θϵ > 0, ∀v ∈ C0(R+, X),
‖u − v‖∞ ≤ θϵ ⇒ ‖Nϕ(u) − Nϕ(v)‖∞ ≤ ϵ.

}
that is the continuity of Nϕ.

Now, to treat the di�erentiability of the Nemytskii operator, we introduce the following list of conditions.

(A3) For all (t, x) ∈ R+ × X, the Fréchet partial di�erential D2ϕ(t, x) exists and D2ϕ ∈ C0(R+ × X,L(X, Y)).
(A4) limt→+∞ ϕ(t, 0) = 0.
(A5) lim(t,x)→(+∞,0) D2ϕ(t, x) = 0.

Lemma 3.4. Let ϕ : R+ × X → Y be a mapping which satis�es the conditions (A1), (A3), (A4) and (A5). Then ϕ
satis�es (A2).

Proof. (A5) means:
∀ϵ > 0, ∃R1ϵ > 0, ∃η1ϵ > 0, ∀t ∈ R+, ∀x ∈ X,
(t ≥ R1ϵ , ‖x‖ ≤ η1ϵ )⇒ ‖D2ϕ(t, x)‖ ≤ ϵ.

}
(3.4)

(A4) means:
∀ϵ > 0, ∃ξϵ > 0, ∀t ∈ R+, t ≥ ξϵ ⇒ ‖ϕ(t, 0)‖ ≤ ϵ. (3.5)
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We �x ϵ > 0 and we set ζϵ := max{R1√ϵ/2, ξϵ/2} > 0 and µϵ := min{
√ ϵ

2 , η
1√
ϵ/2} > 0. Let t ∈ R+ such that t ≥ ζϵ

and let x ∈ X such that ‖x‖ ≤ µϵ. Note that for all z ∈ [0, x], we have ‖z‖ ≤ ‖x‖ ≤ µϵ. Using the mean value
inequality ([6]) we obtain

‖ϕ(t, x)‖ ≤ ‖ϕ(t, x) − ϕ(t, 0)‖ + ‖ϕ(t, 0)‖ ≤ sup
z∈[0,x]

‖D2ϕ(t, z)‖.‖x‖ + ‖ϕ(t, 0)‖ ≤
√
ϵ
2

√
ϵ
2 + ϵ2 .

And so we have proven the following assertion

∀ϵ > 0, ∃ζϵ > 0, ∃µϵ > 0, ∀t ∈ R+, ∀x ∈ X,
(t ≥ ζϵ , ‖x‖ ≤ µϵ)⇒ ‖ϕ(t, x)‖ ≤ ϵ

}

that is (A2).

Theorem 3.5. Let ϕ : R+×X → Y.Under the conditions (A1), (A3), (A4) and (A5), Nϕ ∈ C1(C0(R+, X), C0(R+, Y))
and for all u, h ∈ C0(R+, X), DNϕ(u).h = [t 7→ D2ϕ(t, u(t)).h(t)].

Proof. Using Lemma 3.4 and Theorem 3.3, we have Nϕ ∈ C0(C0(R+, X), C0(R+, Y)), and using Theorem 3.3 on
D2ϕ, we obtain that ND2ϕ is continuous from C0(R+, X) into C0(R+,L(X, Y)).

We �x u ∈ C0(R+, X). Then we have

∀ϵ > 0, ∃Tϵ > 0, ∀t ∈ R+, t ≥ Tϵ ⇒ ‖u(t)‖ ≤ ϵ. (3.6)

The meaning of (A5) is
∀ϵ > 0, ∃R1ϵ > 0, ∃η1ϵ , ∀t ∈ R+, ∀x ∈ X,
(t ≥ R1ϵ , ‖x‖ ≤ η1ϵ )⇒ ‖D2ϕ(t, x)‖ ≤ ϵ.

}
(3.7)

For all L ∈ (0, +∞), since {(t, u(t)) : t ∈ [0, L]} is compact, we can use the lemma of Heine-Schwartz
([12], Footnote (**) p. 355), and we can assert that the following assertion holds.

∀L ∈ (0, +∞), ∀ϵ > 0, ∃β(L, ϵ) > 0, ∀t ∈ [0, L], ∀x ∈ X,
‖x − u(t)‖ ≤ β(L, ϵ)⇒ ‖D2ϕ(t, x) − D2ϕ(t, u(t))‖ ≤ ϵ.

}
(3.8)

We �x ϵ > 0 and we set
Sϵ := max{R1ϵ/2, Tηϵ/2}
γϵ := min{ 12η

1
ϵ/2, β(Sϵ , ϵ)}.

}
(3.9)

Let h ∈ C0(R+, X) such that ‖h‖∞ ≤ γϵ. Then

t ≥ Sϵ ⇒ (t ≥ R1ϵ/2, ‖u(t)‖ ≤ η
1
ϵ/2)⇒ ‖D2ϕ(t, u(t))‖ ≤

ϵ
2 .

Moreover ‖h‖∞ ≤ γϵ ⇒ (∀t ∈ R+, ‖h(t)‖ ≤ 1
2η

1
ϵ/2).

When t ≥ Sϵ and z ∈ [u(t), u(t) + h(t)] then we have ‖z‖ ≤ max{‖u(t)‖, ‖u(t) + h(t)‖} ≤ ‖u(t)‖ + ‖h(t)‖ ≤
1
2η

1
ϵ/2 + 1

2η
1
ϵ/2 = η

1
ϵ/2 that implies

‖D2ϕ(t, z)‖ ≤
ϵ
2 ⇒ ‖D2ϕ(t, z) − D2ϕ(t, u(t))‖ ≤ ‖D2ϕ(t, z)‖ + ‖D2ϕ(t, u(t))‖ ≤ 2

ϵ
2 = ϵ.

And so we have proven the following assertion.

(t ≥ Sϵ , z ∈ [u(t), u(t) + h(t)])⇒ ‖D2ϕ(t, z) − D2ϕ(t, u(t))‖ ≤ ϵ. (3.10)

We take L = Sϵ and from (3.8) we obtain:

(t ∈ [0, Sϵ], z ∈ [u(t), u(t) + h(t)])⇒



Local attractivity in nonautonomous semilinear evolution equations | 77

‖z − u(t)‖ ≤ ‖h(t)‖ ≤ γϵ ≤ β(Sϵ , ϵ)⇒ ‖D2ϕ(t, z) − D2ϕ(t, u(t))‖ ≤ ϵ.

And so we have proven

(t ∈ [0, Sϵ], z ∈ [u(t), u(t) + h(t)])⇒ ‖D2ϕ(t, z) − D2ϕ(t, u(t))‖ ≤ ϵ. (3.11)

From (3.10) and (3.11) we deduce the following assertion.

∀t ∈ R+, sup
z∈[u(t),u(t)+h(t)]

‖D2ϕ(t, z) − D2ϕ(t, u(t))‖ ≤ ϵ. (3.12)

We introduce Λ : C0(R+, X)→ C0(R+, Y) the operator de�ned by Λ(h) := [t 7→ D2ϕ(t, u(t)).h(t)].
This operator is linear and it is continuous since supt∈R+

‖D2ϕ(t, u(t))‖ < +∞.
Using the mean value theorem ([6], Corollary 4.4, p. 342) and (3.12), we obtain, for all t ∈ R+,

‖ϕ(t, u(t) + h(t)) − ϕ(t, u(t)) − D2ϕ(t, u(t).h(t)‖

≤ sup
z∈[u(t),u(t)+h(t)]

‖D2ϕ(t, z) − D2ϕ(t, u(t))‖.‖h(t)‖ ≤ ϵ‖h(t)‖,

that implies ‖Nϕ(u + h) − Nϕ(u) − Λ(h)‖∞ ≤ ϵ‖h‖∞. This last relation proves that Nϕ is Fréchet di�erentiable
at u and that DNϕ(u) = Λ.

Now we consider u, v, h ∈ C0(R+, X) with ‖h‖∞ ≤ 1. We have

‖DNϕ(u).h − DNϕ(v).h‖∞ = sup
t∈R+

‖D2ϕ(t, u(t)).h(t) − D2ϕ(t, v(t)).h(t)‖

≤ sup
t∈R+

‖D2ϕ(t, u(t)) − D2ϕ(t, v(t))‖.‖h(t)‖ ≤ ‖ND2ϕ(u) − ND2ϕ(v)‖

that implies
‖DNϕ(u) − DNϕ(v)‖ ≤ ‖ND2ϕ(u) − ND2ϕ(v)‖,

and since ND2ϕ is continuous, DNϕ is also continuous.

After the continuity and the di�erentiability, we study the Lipschitzian property. We introduce the condition

(A6) ∃c ∈ R+, ∀t ∈ R+, ∀x, x1 ∈ X, ‖ϕ(t, x) − ϕ(t, x1)‖ ≤ c‖x − x1‖.

Theorem 3.6. Let ϕ : R+ × X → Y. Under (A1), (A4) and (A6), the Nemytskii operator Nϕ is Lipschitzian from
C0(R+, X) into C0(R+, Y).

Proof. After Lemma 3.1, to prove that Nϕ(C0(R+, X)) ⊂ C0(R+, Y), we need to prove that (A4) and (A6) imply
(A2). This is easy when c = 0. Now we assume that c > 0. We �x ϵ > 0. We use ξϵ provided by (3.4). When
t ≥ ξϵ/2 and when ‖x‖ ≤ ϵ

2c we obtain

‖ϕ(t, x)‖ ≤ ‖ϕ(t, x) − ϕ(t, 0)‖ + ‖ϕ(t, 0)‖ ≤ c‖x‖ + ‖ϕ(t, 0)‖ ≤ 2 ϵ2 = ϵ.

And so (A2) is ful�lled.
For all u, v ∈ C0(R+, X) and for all t ∈ R+, we have ‖ϕ(t, u(t)) − ϕ(t, v(t))‖ ≤ c‖u(t) − v(t)‖ that implies
‖Nϕ(u) − Nϕ(v)‖∞ ≤ c‖u − v‖∞.

4 Results on global asymptotic stability
We consider a family (A(t))t∈R+ of linear unbounded operators on the Banach space X. We assume that this
family generates an evolution family (U(t, s))t≥s≥0 on which we consider the following conditions.
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(A7) U(t, s) ∈ L(X, X) for all t ≥ s ≥ 0.
(A8) U(t, t) = I (the identity) for all t ∈ R+.
(A9) U(t, r)U(r, s) = U(t, s) for all t ≥ r ≥ s ≥ 0.
(A10) (t, s) 7→ U(t, s)x is continuous for all x ∈ X.
(A11) There exists K ∈ R+ and ω ∈ (0, +∞) such that ‖U(t, s)‖ ≤ Ke−ω(t−s) for all t ≥ s ≥ 0.

Remark 4.1. After [10] (Theorem 8.1, p. 173) these conditions (A7-A11) can be seen as consequences of condi-
tions on (A(t))t∈R+ . If (A(t))t∈R+ satis�es the following conditions

(P1) D(A(t)) = D for all t ∈ R+, and D is dense in X.
(P2) For all t ∈ R+, the resolvent R(λ : A(t)) exists for all λ ∈ C such that Reλ ≤ 0 and : ∃M ∈ R+, ∀t ∈ R+,

∀λ ∈ C s.t. Reλ ≤ 0, ‖R(λ : A(t))‖ ≤ M
|λ|+1 .

(P3) There exists L ∈ R+ and there exists α ∈ (0, 1] such that, for all r, s, t ∈ R+, ‖(A(t)−A(s))A(r)−1‖ ≤ L|t−s|α.
(P4) The operators A(t)A(s)−1 are uniformly bounded for s, t ∈ R+ and there exists a closed operator A(∞)with

domain D such that limt→+∞ ‖(A(t) − A(∞))A(0)−1‖ = 0.

Lemma 4.2. Under (A7-A11) the following assertions hold.

(i) 0 is globally asymptotically stable for (1.1).
(ii) For all b ∈ C0(R+, X) all the solutions of (1.2) converge to zero at in�nity.
(iii) Following assertion (ii), when we �x x ∈ X, we can de�ne the operator Sx : C0(R+, X)→ C0(R+, X), Sx(b) :=

[t 7→ U(t, 0)x +
∫ t
0 U(t, s)b(s)ds]. Then Sx is a�ne continuous and it is K

ω -Lipschitzian.

Proof. We arbitrarily �x x ∈ X, b ∈ C0(R+, X) and ϵ > 0. Since b ∈ C0(R+, X), there exists Tϵ > 0 such that
for all t ≥ Tϵ, ‖b(t)‖ ≤ ϵ. Then, for all t ≥ Tϵ, we have

‖u(t)‖ ≤ ‖U(t, 0)x‖ +
∫ t
0 ‖U(t, s)‖.‖b(s)‖ds

≤ ‖U(t, 0)x‖ + K.
∫ t
0 e

−ω(t−s)‖b(s)‖ds
≤ ‖U(t, 0)x‖ + K.

∫ Tϵ
0 e−ωtϵωs‖b(s)‖ds + K.

∫ t
Tϵ e

−ωteωs .ϵds
= ‖U(t, 0)x‖ + K.e−ωt

∫ Tϵ
0 eωs‖b(s)‖ds + ϵ.K. 1ω .(1 − ϵ

−ωteωTϵ )

and so when t → +∞, since K.
∫ Tϵ
0 eωs‖b(s)‖ds is constant with respect to t, we have

lim
t→+∞

(K.e−ωt
Tϵ∫
0

eωs‖b(s)‖ds) = 0,

and since limt→+∞ ϵ Kω (1 − e
−ωteωTϵ ) = ϵ Kω , we obtain

lim sup
t→+∞

‖u(t)‖ ≤ 0 + ϵ Kω ,

and then taking ϵ → 0+, we obtain limt→+∞ u(t) = 0. And so the assertion (ii) is proven.

Taking b = 0 in assertion (ii), we obtain that 0 is an attractor for equation (1.1).

About assertion (iii), it is clear that Sx is a�ne. We consider b, b1 ∈ C0(R+, X), and then, for all t ∈ R+,
we have

‖Sx(b)(t) − Sx(b)(t)‖ = ‖
t∫

0

U(t, s)(b(s) − b1(s))ds‖ ≤
t∫

0

Ke−ωtϵωsds.‖b − b1‖∞

= Ke−ωt( e
ωt

ω − 1
ω )‖b − b1‖∞ = K

ω (1 − e
−ωt)‖b − b1‖∞ ≤

K
ω ‖b − b1‖∞.
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Theorem 4.3. Let f : R+ × X → X a mapping which satis�es (A1), (A4) and (A6). Under (A7-A11), we assume
that c < ω

K where c is provided by (A6) and K and ω are provided by (A11). Then all themild solutions of equation
(1.3) converge to zero at in�nity.

Proof. We arbitrarily �x a mild solution u of (1.3), we set x := u(0). Note that v ∈ C0(R+, X) is a mild solution
of the Cauchy problem ((1.3), v(0) = x) if and only if v = Sx ◦ Nf (v).

Using Theorem 3.6, we know that Nf is c-Lipschitzian from C0(R+, X) into C0(R+, X), and using Lemma
4.2, we know that Sx is K

ω -Lipschitzian from C0(R+, X) into C0(R+, X). And so Sx ◦ Nf is c Kω -Lipschitzian from
C0(R+, X) into C0(R+, X), and since c < ω

K , Sx ◦ Nf is a strict contraction. Then we can use the Picard-Banach
�xed point theorem that there exists a unique �xed point of Sx ◦Nf that we denote by v. Using the uniqueness
of the mild solution of a Cauchy problem, we can say that u = v, and so u ∈ C0(R+, X).

5 Results on local attractivity
Theorem 5.1. Under (A7-A11) we assume that the mapping f : R+ × X → X satis�es (A1). Let u ∈ C0(R+, X) be
a mild solution of (1.3) which satis�es the following conditions

(i) There exist R ∈ (0, +∞) and σ ∈ (0, 1] such that, for all t ∈ R+ and for all y, y1 ∈ B(R), ‖f (t, u(t) + y) −
f (t, u(t) + y1)‖ ≤ σ.‖y − y1‖.

(ii) σ < ω
K .

Then u is locally attractive for (1.3).

Proof. We introduce the mapping h : R+ × X → X by setting

h(t, y) := f (t, u(t) + y) − f (t, u(t)). (5.1)

Under assumptions (i) and (ii) we have

∀(t, y) ∈ R+ × B(R), ‖h(t, y)‖ ≤ σ‖y‖ ≤ ‖y‖ ≤ R. (5.2)

Since h(t, y) − h(t, y1) = f (t, u(t) + y) − f (t, u(t) + y1), from assumption (i) we obtain

∀t ∈ R+, ∀y, y1 ∈ B(R), ‖h(t, y) − h(t, y1)‖ ≤ σ‖y − y1‖. (5.3)

Using (5.1), (5.2), ((5.3), we can de�ne Nh : C0(R+, B(R)) → C0(R+, B(R)) by setting Nh(v) := [t 7→ h(t, v(t))].
From (5.3) we obtain

∀v, v1 ∈ C0(R+, B(R)), ‖Nh(v) − Nh(v1)‖∞ ≤ σ‖v − v1‖∞. (5.4)

Using Lemma 4.2 we know that Sx is K
ω -Lipschitzian. When y ∈ B(R) and when v ∈ C0(R+, B(R))), noting that

h(t, 0) = 0 and using Lemma 4.2, assumption (ii) and (5.2) we obtain

‖Sy(Nh(v)‖∞ ≤
K
ω ‖Nh(v)‖∞ ≤

K
ωσ‖v‖∞ ≤ ‖v‖∞ ≤ R,

that implies
Sy ◦ Nh(C0(R+, B(R))) ⊂ C0(R+, B(R)). (5.5)

Since the uniform convergence implies the pointwise convergence, C0(R+, B(R)) is a closed subset of the Ba-
nach space C0(R+, X), and then endowed with the distance d∞(v, v1) := ‖v − v1‖∞, it is a complete met-
ric space. Using Lemma 4.2, (5.4) and assumption (ii), Sy ◦ Nh is a strict contraction on C0(R+, B(R)). Then
using the Picard-Banach �xed point theorem, we can assert that, for all y ∈ B(R)), there exists a unique
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vy ∈ C0(R+, B(R)) such that Sy ◦ Nh(vy) = vy. Using the uniqueness of the mild solution of the Cauchy prob-
lem on

v′(t) = A(t)v(t) + h(t, v(t)), (5.6)

we obtain that, for all y ∈ B(R)), the unique mild solution of the Cauchy problem ((5.6), v(0) = y) belongs to
C0(R+, B(R)) ⊂ C0(R+, X).

We set x := u(0). Let x ∈ X such that ‖x − x‖ ≤ R. Then x = x + y with y ∈ B(R), and we denote by ux+y the
unique mild solution of ((1.3), u(0) = x + y). We set v := ux+y − u, then we have, for all t ∈ R+,

v(t) = ux+y(t) − u(t) =

U(t, 0)(x + y) +
t∫

0

U(t, s)f (s, u(s) + v(s))ds − U(t, 0)x −
t∫

0

U(t, s)f (s, u(s))ds

= U(t, 0)y +
t∫

0

U(t, s)h(s, v(s))ds,

and so v is the unique mild solution of ((5.6), v(0) = y) that implies that v ∈ C0(R+, B(R)), and consequently
limt→+∞ ‖v(t)‖ = 0, i.e. limt→+∞ ‖ux+y(t) − u(t)‖ = 0.

Remark 5.2. If we assume that D2f (t, x) exists for all (t, x) ∈ R+ × X, and when the following inequality holds

sup
y∈B(R)

sup
t∈R+

‖D2f (t, u(t) + y)‖ ≤ σ, (5.7)

the assumption (i) of Theorem 5.1 is ful�lled. This is a simple consequence of the mean value theorem ([6],
Corollary 4.3, p. 342), since for all y, y1 ∈ B(R) and for all t ∈ R+,

‖f (t, u(t) + y) − f (t, u(t) + y1)‖ ≤ sup
θ∈[0,1]

‖D2f (t, u(t) + (1 − θ)y + θy1)‖.‖y − y1‖,

and since B(R) is convex, we obtain

‖f (t, u(t) + y) − f (t, u(t) + y1)‖ ≤ sup
z∈B(R)

‖D2f (t, u(t) + z)‖.‖y − y1‖,

and so (5.7) implies (i) of Theorem 5.1.

Corollary 5.3. We assume that (A7-A11) are ful�lled. We also assume that f ∈ APU(R+ × X, X) (respectively
f ∈ AAPU(R+×X, X), respectively f ∈ AAU(R+×X, X), that D2f (t, x) exists for all (t, x) ∈ R+×X, and that D2f ∈
APU(R+ × X,L(X, X)) (respectively D2f ∈ AAPU(R+ × X,L(X, X)), respectively D2f ∈ AAU(R+ × X,L(X, X))).
Let u ∈ AP0(R+, X) (respectively u ∈ AAP0(R+, X), respectively u ∈ AA0(R+, X)) be a mild solution of (1.3)
which satis�es the following inequality:
supt∈R+

‖D2f (t, u(t))‖ < min{ωK , 1}.
Then u is locally attractive for (1.3).

Proof. First we consider the casewhere the given solution is almost periodic. Using Theorem 3.5 in [3] on D2f ,
the Nemytskii operator ND2 f is continuous from AP0(R+, X) into AP0(R+,L(X, X)), therefore we have

∀ϵ > 0, ∃δϵ > 0, ∀w ∈ AP0(R+, X), ‖w‖∞ ≤ δϵ ⇒
∀t ∈ R+, ‖D2f (t, u(t) + w(t)) − D2f (t, u(t))‖ ≤ ϵ

}

and then, for all t ∈ R+,

‖D2f (t, u(t) + w(t))‖ ≤ ‖D2f (t, u(t) + w(t)) − D2f (t, u(t))‖ + ‖D2f (t, u(t))‖ ≤ ϵ + ‖D2f (t, u(t))‖.



Local attractivity in nonautonomous semilinear evolution equations | 81

Since the constant functions belong to AP0(R+, X), we can say that

∀ϵ > 0, ∃δϵ > 0, ∀y ∈ X, ‖y‖ ≤ δϵ ⇒
∀t ∈ R+, ‖D2f (t, u(t) + y)‖ ≤ ϵ + ‖D2f (t, u(t))‖,

}
i.e.

∀ϵ > 0, ∃δϵ > 0,
supy∈B(δϵ) supt∈R+

‖D2f (t, u(t) + y)‖ ≤ ϵ + supt∈R+
‖D2f (t, u(t))‖,

}
(5.8)

We choose ϵ0 := 1
2 (min{ωK , 1} − supt∈R+

‖D2f (t, u(t))‖) > 0, R := δϵ0 , σ := ϵ0 + supt∈R+
‖D2f (t, u(t))‖ <

min{ωK , 1}, and using (5.8) we see that (5.7) is ful�lled and using Remark 5.2 we obtain that the assumptions
(i) and (ii) of Theorem 5.1 are ful�lled, and then using Theorem 5.1 we obtain the announced conclusion. To
prove the casewhere the given solution is asymptotically almost periodic (respectively almost automorphic) it
su�ces to replace the use of Theorem 3.5 of [3] by the use of Theorem 8.4 (respectively Theorem 9.6 in [3]).

Remark 5.4. We can �nd in [2] conditions to ensure the existence of almost periodic mild solution of (1.3) when
(A7-A11) are ful�lled and when f ∈ APU(R+ × X, X). About the existence of almost automorphic mild solution of
(1.3) when (A(t))t∈R+ is exponentially stable and when f ∈ AAU(R+ × X, X) we can see [5].

Remark 5.5. When u ∈ AP0(R+, X) (respectively AA0(R+, X)) the previous corollary says that the solutions
which are near to u are the sum of u and of a function which belongs to C0(R+, X), and so they belong to
AAP0(R+, X) (respectively AAA0(R+, X)).

In Theorem 5.1 we have treated the case of a arbitrary mild solution, in Corollary 5.3 we have treated the cases
of an almost periodic or an asymptotically almost periodic or an almost automorphic mild solution; in the
following theoremwe treat the case of amild solutionwhich converges to zero at in�nity by using the implicit
function theorem.

Theorem 5.6. We assume that (A7-A11) are ful�lled. Let f : R+ × X → X be a mapping which satis�es the
following conditions:

(a) f ∈ C0(R+ × X, X)
(b) ∀(t, x) ∈ R+ × X, D2f (t, x) exists and D2f ∈ C0(R+ × X,L(X, X))
(c) limt→+∞ f (t, 0) = 0
(d) lim(t,x)→(+∞,0) D2f (t, x) = 0.

Let u ∈ C0(R, X) be a mild solution of (1.3). We set x := u(0). We assume that supt∈R+
‖D2f (t, u(t))‖ < ω

K .
Then u is locally attractive for (1.3).

Proof. We introduce the nonlinear operator Γ : X × C0(R+, X)→ C0(R+, X) by setting

Γ(x, u) := u − Sx ◦ Nf (u) (5.9)

when x ∈ X and u ∈ C0(R+, X). In a �rst step we establish that Γ is of class C1.
Since Sx ◦Nf (u) = [t 7→ U(t, 0)x+

∫ t
0 U(t, s)f (s, u(s))ds], we see that x 7→ Γ(x, u) is a�ne continuous and that

D1Γ(x, u).y = [t 7→ −U(t, 0).y] (5.10)

for all x, y ∈ X and for all u ∈ C0(R+, X). Since D1Γ(x, u) is independent of (x, u), it is continuous and so we
obtain

(x, u) 7→ D1Γ(x, u) ∈ C0(X × C0(R+, X),L(X, C0(R+, , X))). (5.11)

Under Theorem 3.5 we can use our assumption to ensure that Nf is of class C1 and DNf (u).h = [t 7→
D2f (t, u(t)).h(t)]. Since Sx is a�ne continuous, it is of class C1, and so Sx ◦ Nf is C1 as a composition of
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C1 operators, and since the identity is C1, D2Γ(x, u) exists and we have

D2Γ(x, u) = I − S0 ◦ DNf (u) (5.12)

for all (x, u) ∈ X × C0(R+, X). Note that D2Γ(x, u) is independent of x, and since DNf is of class C1, we obtain
the following assertion.

(x, u) 7→ D2Γ(x, u) ∈ C0(X × C0(R+, X),L(C0(R+, X), C0(R+, X))). (5.13)

Using Theorem 7.1 in [6] (p. 352), from (5.11) and (5.13) we deduce that Γ is of class C1. Since S0 is linear
continuous, using Lemma 4.2, (iii), we know that ‖S0‖ ≤ K

ω , and ‖S0◦DNf (u)‖ ≤ ‖S0‖. supt∈R+
‖D2f (t, u(t))‖ <

1 after our assumption, and so using Theorem 2.1 in [6] (p. 74) we can assert that D2Γ(x, u) = I − S0 ◦ DNf (u)
is a topological isomorphism on C0(R+, X). Then we can use the implicit function theorem ([6], Theorem 2.1,
p. 364) and we obtain that there exist an open neighborhood N of x in X, an open neighborhood V of u in
C0(R+, X), and a C1 mapping Φ : N → V such that Φ(x) = u and such that Γ(x,Φ(x)) = 0 for all x ∈ N. Note
that

Γ(x,Φ(x)) = 0⇐⇒ Φ(x) = Sx ◦ Nf (Φ(x))⇒ Φ(x) = [t 7→ U(t, 0)x +
t∫

0

U(t, s)f (s,Φ(x)(s))ds]

that implies that Φ(x) is a mild solution of the Cauchy problem ((1.3), u(0) = x). Using the uniqueness of the
mild solutions of the Cauchy problems on (1.3), we can say that ux = Φ(x) for all x ∈ N. Consequently, for
all x ∈ N, ux ∈ C0(R+, X), and then limt→+∞ ux(t) = 0 and also limt→+∞(u(t) − ux(t)) = 0, that is the local
attractivity of u.
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