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Sepsis, a leading cause of morbidity and mortality, is caused by a deregulated host

response to pathogens, and subsequent life-threatening organ dysfunctions. All major

systems, including the cardiovascular, respiratory, renal, hepatic, hematological, and

the neurological system may be affected by sepsis. Sepsis associated neurological

dysfunction is triggered by multiple factors including neuro-inflammation, excitotoxicity,

and ischemia. Ischemia results from reduced cerebral blood flow, caused by extreme

variations of blood pressure, occlusion of cerebral vessels, or more subtle defects

of the microcirculation. International guidelines comprehensively describe the initial

hemodynamic management of sepsis, revolving around the normalization of systemic

hemodynamics and of arterial lactate. By contrast, the management of sepsis patients

suffering from brain dysfunction is poorly detailed, the only salient point being

mentioned is that sedation and analgesia should be optimized. However, sepsis and the

hemodynamic consequences thereof as well as vasopressors may have severe untoward

neurological consequences. The current review describes the general neurological

complications, as well as the consequences of vasopressor therapy on the brain and

its circulation and addresses methods for cerebral monitoring during sepsis.
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INTRODUCTION

Sepsis is characterized by life-threatening organ dysfunction following non-homeostatic host
response to an infection (1). Sepsis associated encephalopathy (SAE), a transient and potentially
reversible brain dysfunction, occurs during the course of sepsis of an extra neurological source. SAE
is both a frequent and serious complication (2). Indeed, in sepsis, acute neurological dysfunction
occurs in up to 70% of cases (3, 4). Altered mental status is a risk factor of poor outcome for
infected patients in the emergency room or in the ward (1, 5). Imaging studies of the brain in
SAE are in most cases unremarkable. Mechanisms underlying SAE include neuro-inflammation,
excitotoxicity, and ischemia. Ischemia occurs because of macrocirculatory and/or microcirculatory
defects. Vasopressors are a cornerstone of the management of septic shock. However, vasoactive
drugs may have deleterious consequences on cerebral perfusion. We herein review how sepsis, per
se, may affect the brain, as well as the direct and indirect cerebral consequences of vasopressor
therapy in sepsis.
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FIGURE 1 | Pathophysiology of sepsis associated encephalopathy.

SEPSIS AND THE BRAIN

Clinical features of SAE include sickness behavior, delirium
and coma (6). Sickness behavior, the initial adaptive response
to neuro-inflammation, results from the interaction of the
inflammatory cytokines interleukin (IL)-1 alpha and IL-1 beta,
tumor necrosis factor (TNF)-alpha and IL-6 on the brain.
Sickness behavior associates apathy, asthenia, anorexia, and
social withdrawal (7, 8). Delirium, characterized by fluctuating
awareness and attention (9–11), presents as two distinctive
entities, hyperactive delirium, which is easy to recognize but
is fairly rare and hypoactive delirium which is frequent but
may easily be overlooked (12). Delirium is detected at the
bedside, using specific scales including the Confusion assessment
method for the intensive care unit (CAM-ICU) or the Intensive
Care Delirium Screening Checklist (ICDSC) (11, 13). Delirium
is associated with prolonged mechanical ventilation, increased
length of ICU stay and increased mortality (14). Medications,
including Haloperidol, Ziprasidone, or Simvastatine all failed
to reduce the duration of delirium in high quality randomized
controlled trials (15, 16). The most severe form of neurological
involvement in sepsis is coma which is linked to increased
mortality and brainstem dysfunction (17–19). Neurological
status is quantified using the Glasgow coma score or the FOUR
score, which also assesses the brainstem function (20, 21). Sepsis
survivors may suffer from long term neurological sequelae,
including ICU-acquired paresis and cognitive impairment with
subsequent functional disabilities and poor quality of life (22–24).

PATHOPHYSIOLOGY OF SEPSIS
ASSOCIATED ENCEPHALOPATHY
(FIGURE 1)

SAE results from several mechanisms, of which neuro-
inflammation, ischemia, and excitotoxicity are the main (25).

Neuro-Inflammation
The blood-brain barrier is formed by endothelial cells with
tight junctions, astrocyte endfeet and pericytes and isolates
the cerebral tissue from potentially noxious circulating
components. Circulating inflammatory components freely
interact with cerebral tissue devoid of blood-brain barrier, the
circumventricular organs (26, 27). Circulating cytokines may
also be shuttled across the blood-brain barrier by specialized
carrier proteins (28–30). Peripheral inflammation is sensed and
transmitted by the vagal nerve to neurovegetative centers and the
limbic system. Neuro-inflammation is subsequently mediated
by microglial cells, the resident macrophages of the brain and
by astrocytes, which support neuronal functions (31). Microglial
cells express membrane-bound receptors that detect damage
associated molecular patterns, and induce cellular activation.
Microglial activation occurs early in experimental models of
sepsis (32, 33) and is characterized by the production of pro
inflammatory cytokines, such as tumor necrosis factor alpha,
interleukin-1 beta and transforming growth factor beta (34).
Statins administered to reduce inflammation did not lower the
incidence of delirium in septic patient (35).

Low cerebral reserves of anti-oxidants make the brain
particularly vulnerable to oxidative stress. Anti-oxidant
reserves are depleted during sepsis (36). Inflammation in sepsis
induces early oxidative stress (37), which may be responsible
for subsequent cognitive impairment (38). Anti-oxidant
drugs reduce neuroinflammation in experimental models of
sepsis (39, 40).

Ischemia
The adult human brain represents only 2% of the total body
weight (41). Due to high metabolic demand, cerebral blood flow
in healthy adults ranges from 750 to 900 ml/min, accounting
for ∼15% of an individual’s resting cardiac output (42, 43).
In physiological conditions, cerebral blood flow is modulated
both at a macrocirculatory and microcirculatory level. Cerebral
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macrocirculation may be disrupted during sepsis, episodes of
hypotensionmay alternate with hypertension leading to ischemic
or hemorrhagic brain injuries (31, 44).

Cerebral Macrocirculation
Adequate cerebral blood flow is critical for the proper function
of the brain. Cerebral autoregulation refers to the capacity
to maintain a constant cerebral blood flow, independently of
systemic arterial pressure. In man, autoregulation occurs for
mean arterial pressures between 60 and 150 mmHg (43). Beyond
these values, cerebral blood flow becomes pressure-dependant
and is therefore linearly correlated with cerebral perfusion
pressure. Low mean arterial pressure leads to low cerebral blood
flow. By contrast, excessive doses of vasoconstrictors may also
lead to end-organ vasoconstriction and ischemia (45, 46).

Assessment of cerebral blood flow in septic patients
is compounded by methodological difficulties. Most studies
involve small populations and compare cerebral blood flow
in sedated and ventilated septic patients to awake, non-septic
control subjects (47, 48). A decrease in cerebral blood flow
of the middle cerebral artery is consistently observed in
experimental endotoxinemia (49, 50) and in sepsis (51–53).
Such a decrease may be secondary to hyperventilation rather
than the consequences of endotoxinemia/sepsis on cerebral
hemodynamics. Sepsis also impairs cerebral autoregulation
(54–57). Interestingly, decreased cerebral autoregulation in sepsis
was found to be associated with delirium (58).

Microcirculation
Cerebral energetic requirements relate to the functioning of
neurons, rather than that of glial supporting tissue. Indeed,
the generation of neuronal action potentials, through the active
transmembrane transport of ions, requires large quantities of
energy. Cerebral blood flow is inhomogeneous, increasing in
areas where neuronal activity is the greatest (59). The metabolic
rate is greater in the gray matter of the brain, where most
the cell bodies lie, than in the white matter (60). Adequate
cerebral blood flow at the cellular level is obtained through
a functioning gliovascular unit, associating endothelial cells,
astrocytes and pericytes (61). Microcirculatory cerebral blood
flow adaptation is modulated by hydrogen ion concentration,
partial carbon dioxide pressure, partial oxygen pressure as well
as neurotransmitter concentration and intracellular calcium
concentration (62, 63). Increased carbon dioxide or hydrogen ion
concentrations or hypoxia lead to cerebral vascular vasodilation
and greater cerebral blood flow (64).

Sepsis, by injuring endothelial cells and inducing the
production of NO disrupts the blood brain barrier, allowing
leucocytes and inflammatory cytokines to penetrate the brain,
which in turn leads to neuroinflammation, thereby promoting
brain dysfunction (65–67). Ischemic or hemorrhagic lesions in
the brainmay occur in the presence of disseminated intravascular
coagulopathy, affecting up to one critically ill patient out of five
(68). In addition, sepsis is associated with mitochondrial
dysfunction, leaving neurons unable to properly use
oxygen (69, 70).

The association of macro and microcirculatory dysfunction
compounded by an incapacity to respond to metabolic needs,
contribute to the formation of cerebral ischemic lesions (24).
Indeed, post mortem studies of the brain of septic patients
found evidence of ischemic lesions (44), which may in part
explain the high prevalence of disability in sepsis survivors (24).
Another well-documented risk factor for ischemic stroke is atrial
fibrillation (71). Large retrospective studies report an increased
risk of new onset atrial fibrillation during sepsis. In a cohort
of more than 60,000 septic patients, atrial fibrillation occurred
during 25.5% of hospitalizations (72). Prospective cohorts in
the ICU confirmed the high incidence of new onset atrial
fibrillation (73, 74). However, the exact prevalence of atrial
fibrillation, which may be transient, is probably underestimated.
Ischemic stroke is a major complication of atrial fibrillation
(75). Large database studies report an increased risk of ischemic
stroke associated with sepsis (75). Additionally, sepsis survivors
having suffered from new onset atrial fibrillation exhibit a
higher risk of subsequent stroke (76). Pathogens such as
Mycoplasma pneumoniae are associated with an increased risk
of stroke, possibly through immune mediated mechanisms
(77). Other pathogens, including the varicella zoster virus,
Treponema pallidum and Streptococcus pneumoniae may cause
vasculopathy or vasculitis (78), while intracranial aneurysms or
blebs, caused by an infection of the arterial wall are typically
associated with Staphylococcus aureus or Streptococcus species
endocarditis (79).

Excitotoxicity
During sepsis, neuronal and microglial apoptosis occur
mainly in the amygdala, nucleus tractus solitarii and locus
coeruleus (44). Excitotoxic neuronal apoptosis is mediated
by glutamate, which is produced in large quantities by
activated microglial cells (80). Cerebrospinal fluid glutamate
concentration correlates with the neurological state during
bacterial meningitis (81). The adjunction of glutamate-
rich cerebrospinal fluid to neuronal cell culture induces
dose dependent cellular toxicity, which is attenuated by the
adjunction of a NMDA receptor antagonist (82). Hydrogen
sulfide and low doses of carbon monoxide also exhibit
protective effects against glutamate-mediated neurotoxicity.
Mitochondrial-mediated apoptosis occurs during sepsis,
mediated by cellular pro-apoptotic factors (83, 84). Other
pro-apoptotic factors, include, nitric oxide, TNFα, and
hyperglycemia (85).

Secondary Neurological Injuries Occurring
During Sepsis
Any organ dysfunction occurring during sepsis may affect the
proper functioning of the brain. These include but are not
limited to, circulatory or cerebral auto-regulation impairment,
systemic organ (hepatic, renal, metabolic, or respiratory) failure
as well as the direct or indirect consequences of medication
side-effects (opioids, sedatives, antibiotics, sodium disorders. . . )
and environmental factors (rest or lack thereof, light, and noise
exposure) (6).
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CEREBRAL MONITORING DURING SEPSIS

Cerebral function assessment in sepsis is frequently overlooked.
For instance, hypoactive delirium, while common, is
underestimated. Means to accurately monitor the cerebral
function at the bedside are not wildly available. Concomitant
sedation may depress the brain function. No evidence or
recommendation supports monitoring cerebral perfusion or
function in septic patients (86). While the dose of vasopressors
should be tailored to meet specific targets or surrogates of organ
function, no guideline proposes neurological endpoints in sepsis.
Nevertheless, several methods enable physicians to assess the
cerebral function or perfusion. Methods used to assess cerebral
function or perfusion include but are not limited to:

- Clinical Scores

The simplest mean of monitoring the brain in an awake patient
is clinical. Acute brain dysfunction is identified using validated
scales for delirium (i.e., ICSDC or CAM-ICU), coma (Glasgow
Coma Scale) or brainstem reflexes in comatose patients (FOUR
score) (10, 11, 20, 21). Vasopressors are rarely, if ever, titrated
to clinical surrogates of brain dysfunction (87). Preliminary data
seem to indicate that during sepsis mean arterial blood pressure
of 80–85 mmHg rather than 65–70 mmHg may mitigate brain
dysfunction (88).

- Biomarkers

Several biomarkers have been promoted to diagnose or manage
brain injuries; including brain injuries of a septic origin.
Elevated levels of protein S100B, neuron-specific enolase (NSE)
or neurofilament have been reported during SAE. However, their
use is controversial since extra-neurological tissues may also
release these proteins (89–92).

- Neuroimaging

Cerebral blood flow may be noninvasively monitored by
transcranial Doppler ultrasound at the bedside. Blood flow
velocity in the cerebral mean artery, a surrogate for cerebral blood
flow, is measured using sound waves. No impact of transcranial
Doppler ultrasound use on patient centered outcomes has ever
been demonstrated. Additionally, inadequate acoustic windows
for transcranial doppler monitoring may occur in up to 10% of
patients (93).
Neuroimaging, using computed tomography or magnetic
resonance imaging of the brain may help demonstrate structural
injury to the central nervous system. Imaging studies in
septic patients with neurological involvement found evidence
of white matter hyperdensities and of ischemic stroke (94–96).
Such anomalies may be associated with long term cognitive
impairment (24). Drawbacks of imaging studies include:
impractical for continuous monitoring, do not accurately predict
the functional state of the patient; and themost recent technology
might not be available in every hospital.
Dynamic methods, including 18F-fluorodeoxyglucose (FDG)
PET imaging and functional MRI go beyond a simple exploration
of cerebral morphology by exploring cerebral activity. Dynamic
neuroimaging techniques, while not routinely used, may be

helpful in predicting long term outcomes in critically ill
patients (97–99).

- Electroencephalogram

The electroencephalogram (EEG) records the neuronal electrical
activity at the surface of the scalp; indirectly informing on
the quality of cerebral perfusion. The EEG is non-invasive
and easily available at the bedside (100). EEG patterns may
be modified during sepsis. Continuous generalized triphasic
waves and burst suppression are associated with the severity of
brain dysfunction and with mortality (101). Delta-predominant
background, absence of EEG reactivity, periodic discharges are
independently associated with mortality (102, 103). However,
none of these patterns are specific of sepsis.

- Evoked Potentials

Sensory evoked potentials are generated in response to
somatosensory, visual or auditory stimuli. Evoked potentials
may be obtained non-invasively at the bedside (100). Sensory
evoked potentials explore the integrity of the peripheral or cranial
nerve, the spinal cord and/or the brainstem, the thalamus and
the cortex. Septic encephalopathy is associated with impaired
somatosensory evoked potentials (104, 105). Prolonged nervous
conduction times hint at an acute brain dysfunction and are
prognostic markers in the critically ill (106, 107).

- Intracranial Pressure

The ideal mean of estimating brain perfusion at the bedside
is through the assessment of cerebral perfusion pressure. Since
the brain is enclosed in a rigid cranium, cerebral perfusion
pressure (CPP) is related to mean arterial pressure (MAP) and
intracranial pressure (ICP) by the equation CPP = MAP—
ICP. Brain injury leading to elevated ICP will reduce CPP if
blood pressure remains identical. During severe brain injuries,
vasopressors will maintain MAP but may also induce extreme
vasoconstriction in the injured zones of the brain, lowering
blood flow in these regions, thereby potentially worsening
cerebral injuries (108). Optimal blood pressure strikes a delicate
balance between transcapillary hydrostatic and oncotic forces
and acceptable cerebral perfusion pressure (108). Only one
study in sepsis assessed ICP without finding any evidence of
intracranial hypertension (109). Intracranial pressure is almost
never directly measured in sepsis, even in severe central nervous
system infections, which are theoretically the most at risk of
intracranial hypertension. Routine monitoring of intracranial
pressure is not recommended in sepsis (110, 111).

- Cerebral Oximetry

Near-infrared spectroscopy uses the principle of light
transmission and absorption to determine the tissue
concentration of oxyhemoglobin and deoxyhemoglobin
and to calculate tissue oxygen saturation. Cerebral oxygen
saturation is measured at the frontal lobe and is used as a
surrogate for cerebral blood flow. Decreased cerebral oxygen
saturation during sepsis may be associated with an increased
risk of death (112). Cerebral tissues oxygenation indexes assess
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cerebral autoregulation in septic patients (56). The exact role of
cerebral oximetry for monitoring the cerebral function in sepsis
needs to be defined (113).

EFFECT OF VASOPRESSORS ON THE
BRAIN

Direct Effect
Moderate doses of norepinephrine increase cerebral vascular
resistances and moderately decrease cerebral blood flow in
isolated perfused dog brains (114). In healthy volunteers,
norepinephrine lowers cerebral blood flow by increasing cerebral
vascular resistances (115). The systemic administration of low
doses of dopamine or norepinephrine in healthy piglets increases
cerebral oxygenation (116, 117). High doses of norepinephrine
administered to healthy rodents induce heterogeneous increases
of cerebral blood flow and disruption of the blood brain barrier
(118). The infusion of high doses of norepinephrine in healthy
volunteers negatively affects cerebral oxygenation (45). The
adjunctive administration of vasopressin in sepsis did not alter
the number of days alive without neurological dysfunction (119).
The systemic administration of moderate doses of angiotensin II
to healthy pigs increases carotid blood flow; the effect on cerebral
blood flow was not reported (120). The systemic administration
of high doses of angiotensin to healthy baboons lead to disruption
of the blood brain barrier and to ischemic brain lesions (121). In
healthy humans, the intracarotid administration of angiotensin
did not change regional cerebral blood flow (122, 123).

Indirect Effect
New onset atrial fibrillation in the ICU is linked to the presence
of endogenous or exogenous vasopressors. A randomized

trial comparing the administration of norepinephrine plus
dobutamine vs. epinephrine in the treatment of sepsis found that
overall 2% of the population developed an ischemic stroke, and
1% of the population developed cerebral bleeding over the first 3
months (124). Both the incidence of supraventricular arrhythmia
and of stroke was similar in patients treated by norepinephrine
plus dobutamine vs. epinephrine (124). The incidence of cardiac
arrhythmia is greater with dopamine than with norepinephrine
(125, 126). The adjunctive administration of vasopressin in sepsis
did not alter the prevalence of cerebrovascular accidents (119).
The administration of angiotensin II in vasodilatory shock is not
associated with an increased risk of brain injury (127).

Little data is available regarding goals for neuroprotection
during sepsis. Higher blood pressure targets may be associated
with mortality (128). Current guidelines indicate that the
optimal MAP target to reduce mortality during sepsis is
65 mmHg (86). MAP target personalization remains to be
formally evaluated.

CONCLUSIONS

Neurological dysfunction is frequent during sepsis. Both sepsis
and high dose vasopressor therapy may negatively impact
cerebral perfusion and/or oxygenation. The best way to
monitor and to manage patients suffering from sepsis-induced
neurological dysfunction remains to be elucidated.
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