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ABSTRACT 

 

A great number of cystic fibrosis (CF) pathogens such as Pseudomonas aeruginosa, the 

Burkholderia cepacia and the Mycobacterium abscessus complex raised difficult therapeutic 

problems due to their intrinsic multi-resistance to numerous antibiotics. Vaccine strategies 

represent one of the key weapons against these multi-resistant bacteria in a number of clinical 

settings like CF. Different strategies are considered in order to develop such vaccines, linked 

either to priming the host response, or by exploiting genomic data derived from the bacterium. 

Interestingly, virulence factors synthesized by various pathogens might serve as targets for 

vaccine development and have been, for example, evaluated in the context of CF.  

 

 

Keywords: cystic fibrosis, vaccine, Mycobacterium abscessus, Pseudomonas aeruginosa, 

Burkholderia spp. 
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Cystic fibrosis and microbial lung infections. 

Cystic fibrosis (CF) is a disease which arises from a Mendelian defect due to a series of 

mutations in the cftr gene encoding the Cl
−
 channel

1
. The resulting flaw in this protein is 

responsible for increasing the viscosity of the mucus, which promotes the accumulation and 

the attachment of bacteria to mucins. Chronic inflammation
2
 and early bacterial infection 

maintain a vicious circle and are each responsible for the lung damage which ensues. Lung 

infections in CF patients represent the most frequent but also the more serious manifestations 

since they are responsible for more than 90% of CF patient deaths
3
. The microorganisms that 

may infect the respiratory system are bacteria, fungi and viruses. Bacterial colonization occurs 

very early in the natural history of the disease
4
. The first causative organisms are 

Haemophilus influenzae and Staphylococcus aureus. S. aureus is usually the first detected
5
 

and its prevalence is rising
6
. Affinity of S. aureus for CF mucus contributes to persistent 

colonization and progressive pulmonary damage increasing the potential for further infections 

to set in, for example Pseudomonas spp. 
5
. Pseudomonas aeruginosa colonization arises 

several months to several years after. Finally, several bacterial complexes are found 

responsible for severe infections in CF, in addition to be the most difficult to treat: the 

Burkholderia cepacia complex (Bcc) and the Mycobacterium abscessus complex, which has 

emerged recently as a threat in CF patients, and may present with Mycobacterium avium, the 

major non-tuberculous mycobacterium (NTM) present in CF lungs with a significant 

prevalence
7,8

. 

 

Opportunistic pathogens becoming untreatable weapons in CF patients 

P. aeruginosa is the environmental opportunistic pathogen in CF patients. It is the most 

commonly isolated bacterium that infects individuals with CF, with colonization and chronic 

infections that may affect up to 80% of adult CF patients
9
. P. aeruginosa establishes a chronic 
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endobronchial infection which impacts on morbidity and mortality of CF patients. P. 

aeruginosa is also notable for its resistance to antibiotics, making it therefore a difficult to 

treat pathogen, which, once acquired, is rarely, if ever, eradicated. In addition, P. aeruginosa 

frequently colonized CF lungs as a biofilm, which reduces the patient's immune response and 

access by antibiotics 
10

. A second opportunistic pathogen, represented as a complex is the 

Burkholderia cepacia complex (Bcc). It is composed of 18 species that are able to cause 

opportunistic and lethal infections CF patients
11

. The two most clinically relevant species are 

Burkholderia cenocepacia and Burkholderia multivorans
12

. These environmental, intracellular 

and biofilm-forming bacteria are extremely antibiotic resistant organism
12

. Bcc infections are 

rarely cleared from CF patients once they are colonized, as observed in P. aeruginosa 

infections. The third antibiotic-resistant bacterium found in CF patients with frequency 

between 3 to 7% 
7,13

 is Mycobacterium abscessus. It is a rapidly growing mycobacterium also 

existing as a complex: the Mycobacterium abscessus complex
14

, with two subspecies M. 

abscessus abscessus and M. abscessus bolletii respectively. M. abscessus is, within the group 

of rapid-growers, responsible for a broad spectrum of diseases in humans. Lung infections are 

frequent, with CF patients particularly susceptible 
7,13,15

, in addition to muco-cutaneous 

infections often of nosocomial origin
16

. Recent reports of human-to-human transmission in 

the context of CF care have been described
17,18

. M. abscessus raises very challenging 

therapeutic issues because of its natural resistance to most available antibiotics
19,20

. Severe, 

even fatal, infections in CF patients have been described due to therapeutic deadlock
21

. M. 

abscessus infection might represent a contraindication for lung transplantation in several 

countries
22

, leaving CF patients without therapeutic options.  

As such, antibiotic treatment exemplifies a clear challenge now faced with these opportunistic 

pathogens. We demonstrated for example a significant link between previous intravenous 

antibiotic courses and the isolation of M. abscessus in CF patient lungs, underlining the role 
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of broad-spectrum antimicrobial therapy in the emergence of M. abscessus disease
23

. And this 

is true for the continuous emergence of resistant P. aeruginosa or Bcc due to the repeated 

antibiotic therapeutic regimens given to CF patients
24

. Emergence of multi-resistant bacteria 

leads to therapeutic impasses with severe and fatal infections
24

.  

Vaccine approaches 

Pathogens can be divided into two groups according to whether vaccines exist against them or 

not. However, no human vaccine has been developed so far against the antibiotic-resistant 

pathogens described above. As such, the development of prophylactic or therapeutic vaccines 

is of extreme importance when confronted with bacteria of this high resistance..  

When defining an appropriate target, making the correct choice and how such tools can be 

developed is a long and tedious process. Development of vaccine targets can profit from 

genome sequence comparisons
25

, and, using a process known as reverse vaccinology, might 

introduce a novel strategy to identify target antigens that might serve as potential vaccines 
25

. 

We chose this strategy for the development of a first vaccine against M. abscessus
26

 (see 

below). Indeed, the presence of specific genes in opportunistic pathogen genomes that are 

absent from saprophytic bacterial genomes belonging to the same genus represents the key to 

unravel virulence factors that can then be targeted using a vaccine approach. A better 

understanding of the “virulence” genes contributes greatly to the development of new control 

strategies against these microorganisms. In addition, the choice of a virulence factor as a 

vaccine target has been shown to be relevant in the scientific literature 
25

. 

Vaccination can then be performed using recombinant proteins when expression and 

purification are possible; or using the expression of plasmid DNA with modified eukaryotic 

gene sequences, as has been performed with M. abscessus
26

. In fact, in the different vaccine 

strategies, DNA vaccines exemplify one of these new strategies and has been used 

successfully in the context of infectious diseases
27

. Over the last 15 years, DNA vaccines have 
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proved effective in animal models including candidates against HIV, malaria and influenza
28

. 

DNA vaccines have been extensively evaluated in humans with a recent review identifying 72 

Phase I, 20 Phase II and two Phase III human trials
29

. Mycobacteria, such as Mycobacterium 

tuberculosis, have received particular attention in this respect
30,31

. Finally, some common 

antigens might be present in a variety of different CF pathogens, and the development of a 

vaccine might have the potential for conferring cross-protection against several CF pathogens 

(see below).  

Vaccines against opportunistic CF pathogens 

Some infections
32,33

 frequently associated with impaired respiratory function in patients with 

cystic fibrosis are the subject of vaccine development: for example infections with P. 

aeruginosa. 

The development of a vaccine against P. aeruginosa has so far mobilized many research 

teams, even though no human trials have been conducted yet. Numerous vaccine attempts 

have been made against this pathogen that is generally considered to be the most targeted 

among pathogens infecting cystic fibrosis patients, and in order to obtain a state of the art 

overview in this domain, you would do well to explore the following recent reviews
34-37

. 

Major target antigens include the O-glycosylated lipopolysaccharide, cell-surface alginate, 

flagella, components of the Type III secretion system and outer membrane proteins
38

. The 

FliC flagellin protein widely considered as a virulence factor, has pro-inflammatory activity 

on respiratory epithelial cells. Flagellin has been one of the major targets for vaccines and 

therapeutic development expecially for CF patients. For example, as early as 1995, P. 

aeruginosa flagella were developed as a vaccine against P. aeruginosa and a Phase I study 

demonstrated that intramuscular immunization in healthy human adults results in high and 

long-lasting serum IgG flagella antibody titers and IgG, IgA and secretory IgA isotypes in the 

secretory immune system
39

. Then, in a phase III study, an immunization with a bivalent 
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vaccine for flagella subtypes significantly lowered the risk for initial P. aeruginosa infection 

in CF patients
40

. Other proteins have been used in human trials: OprF and OprI that are outer 

membrane proteins are able to induce a specific antibody response in the lung after nasal and 

oral vaccinations, and are as such promising candidates for the development of anti-

pseudomonas immunization
41

. Furthermore, a fusion protein of the P. aeruginosa OprF 

fragment, OprI, and FliC promoted the clearance of P. aeruginosa in a pulmonary challenge 

model
42

. Another study which also tested these two outer membrane proteins as mucosal 

vaccines,  lead to the development of airway immunogenicity against the pathogen with 

superior efficacy compared to systemic vaccination
43

. We can add to this, as more recently, 

among the latest antigens and strategies tested, an assay using the conserved surface 

exopolysaccharide alginate, a virulence factor produced by mucoid strains, has been tried in 

mice
44

 and conferred protection after intranasal challenge. It was also efficacious as a 

therapeutic vaccine. Previously, an assay was performed in humans with O-polysaccharide 

conjugated to toxin A and vaccinated children developed less chronic Pseudomonas lung 

infections than non-vaccinated children
45,46

. An element of alginate (polymannuronic acid) 

has also been conjugated to flagellin leading to protective efficacy in a mouse lung infection 

model
47

. Some P. aeruginosa antigens conjugated to bovine serum albumin have also been 

tested in mice
48

. However, despite more than 50 years of research efforts, a licensed vaccine 

against P. aeruginosa is still a long way off from being available for CF patients. 

With reference to the Burkholderia cepacia complex (Bcc), several virulence factors 

associated with human infection were tested for their potential as vaccine candidates
49

. Such 

an approach was undertaken by a group that sought immunoreactive proteins expressed by 

both Burkholderia cenocepacia and Burkholderia multivorans
50

. A recent review summarizes 

in detail all vaccination experiments that have been undertaken against Bcc
51

. As a recent 

example, the flagellar protein FliC from Burkholderia pseudomallei and considered as a 
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virulence factor has been shown to confer protection in mice
52

. This study shows that the 

epitopes of interest in B. pseudomallei FliC cross-react with orthologous B. multivorans and 

B. cenocepacia FliC sequences suggesting protection can be conferred against members of the 

Bcc. Other proteins like OMPs from different Burkolderia species are also able to generate 

protection in mice
53,54

.  

 

Vaccination in the context of mycobacteria. 

The most widely used global vaccine is the “Bacille Calmette et Guérin” (BCG) strain of 

Mycobacterium bovis used in the fight against tuberculosis, a disease caused by 

Mycobacterium tuberculosis, which presently kills 1.3 million individuals around the world 

every year
55

. This technique harnessed the historically defined strategy developed by Jenner
56

, 

by using the antigenic repertoire of a non-pathogenic strain for human, in order to confer 

protection against the human pathogen. Despite its widespread use, BCG is still a 

controversial vaccine, and its deficiencies have lead to the development of new research axes, 

using either purified compounds or a DNA vaccines in a quest to improve anti-mycobacterial 

vaccines. Several mycobacterial proteins (Ag85A/B, 65-kDa heat shock protein, hsp65, 36-

kDa proline-rich antigen, MPB83, MPB70, CFP-10 and ESAT-6) have been evaluated as 

DNA vaccines in experimental models
57-63

. By virtue of its strong capacity to induce CD4+-

mediated Th1 and CD8+-mediated cytotoxic T-lymphocyte responses
25

, DNA vaccine 

approaches are particularly attractive for their preventive and therapeutic activity against 

intracellular pathogens such as pathogenic mycobacteria
61

. The majority of these studies were 

conducted in the fields of human
30,31,57,60,61

 and bovine tuberculosis
58,59

; and even in leprosy 

(immuno-dominant 35-kDa protein
64

). Few DNA vaccines have been developed which are 

related to pathogenic or opportunistic NTM, for example M. avium (35-kDa protein
65

; p85A-
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EGFP, p65K-EGFP
66

); Mycobacterium ulcerans
67

 or Mycobacterium marinum
62,63

. None 

were developed in the context of tackling infections in inherited diseases such as CF.  

While the presence of NTM is demonstrated in 7 to 13% of CF patients
8
, infections by M. 

tuberculosis are rare in CF patients
68,69

. BCG remains a currently recommended vaccine in 

children at risk of exposure to TB; and as a consequence of partial efficacy against NTM, 

continues to be recommended in CF children. The two mycobacteria that together are 

responsible for the majority of infections in cystic fibrosis patients are M. avium and M. 

abscessus, a slow and a rapid growing mycobacteria (SGM and RGM), respectively, and to 

our knowledge, no vaccine approach against these bacteria has been considered in the context 

of CF. As mentioned above, development of vaccine targets can benefit from knowledge 

derived from genome sequence comparison
25

. Genome sequence comparison between the M. 

abscessus genome and Mycobacterium chelonae, Mycobacterium smegmatis genomes (two 

rapid growing NTM, which are less or non-pathogenic respectively), allowed the unraveling 

of several key virulence factors
19

. As described in each genome sequences, several of these 

virulence factors were acquired by horizontal gene transfer, from non-fermenting Gram 

negative bacteria such as those found in CF patient lungs: P. aeruginosa and Bcc
19

. Among 

others we characterized MAB_0555, a phospholipase C (PLC) with the highest homology 

with PLC-N from P. aeruginosa
70

. We have demonstrated the impact of MAB_0555 PLC in 

the virulence of M. abscessus in mice
70

, when pre-cultivated on amoeba. We have also shown 

that the recombinant protein or the plasmid encoding PLC conferred protection, after an 

aerosol or IV challenge (Figure 1), in Δ508 or CF mice
71

 only
26

. The two formulations (Figure 

1) gave quite similar results, namely a diminution of bacterial load in lungs three weeks after 

a M. abscessus aerosol challenge
26

. PLC are also present in other CF pathogens like P. 

aeruginosa and the immune cross reactivity between M. abscessus PLC and P. aeruginosa 

PLC could lead to a vaccine protective against both mycobacterial and Gram negative 
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infection in CF patients, as we were able to show the recognition of the MAB_0555 PLC by 

sera from CF patients only infected by P. aeruginosa. This approach is currently underway in 

our laboratory with other target designs recently unraveled
72

. 

 

Conclusion 

Vaccination is effective in preventing infections and we advocate their use in patients with 

CF, specifically for the prevention of respiratory infections. In addition to the traditional 

vaccination schedules,
73

 evaluation studies to demonstrate the immunological and clinical 

efficacy of novel vaccines against multi-resistant bacteria remain necessary in this particular 

patient population. 
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