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Abstract—To offer innovative malware evolution techniques,
it is appealing to integrate approaches that handle imperfect
data and knowledge. In fact, malware writers tend to target
some precise features within the app’s code to camouflage
the malicious content. Those features may sometimes present
conflictual information about the true nature of the content of
the app (malicious/benign). In this paper, we show how the
Variable Precision Rough Set (VPRS) model can be combined
with optimization techniques, in particular Bilevel-Optimization-
Problems (BLOPs), in order to establish a detection model
capable of following the crazy race of malware evolution initiated
among malware-developers. We propose a new malware detection
technique, based on such hybridization, named Variable Precision
Rough set Malware Detection (ProRSDet), that offers robust
detection rules capable of revealing the new nature of a given
app. ProRSDet attains encouraging results when tested against
various state-of-the-art malware detection systems using common
evaluation metrics.

I. INTRODUCTION

THE amount of malware is increasing exponentially thanks
to the use of advanced malware-development tools [1].

Detection models struggle to keep up with these tricky intru-
sion malicious apps that do not refrain from using the most
effective techniques, like the obfuscated malware, to invade the
targeted systems. In this course of malware development, one
can encounter some data inconsistency specially when dealing
with conflictual features that may appear in both benign and
malicious apps. In this context, few research has focused on
dealing with the inconsistency encountered when extracting
relevant features to either produce or detect malware. Authors
in [2] proposed to adjust the malware detectors in order
to deal with the change that occurs in the data labeling.
More precisely, authors tackled the problem that appears when
the labels used in the training set are different from the
labels used in the testing set and proposed to empirically
quantify the epistemic uncertainty of four combined deep-
learning based Android malware detectors. Santos et al., in
[3], proposed a semi-supervised learning based method to deal
with the existing unlabelled apps (unknown nature beforehand)
in the training process of a detection process. Also, Nauman
et al. [4] looked into a three-way decision-making process
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based on acceptance, rejection, or deferment. When there is
not enough knowledge, the extra deferment choice option
gives the opportunity to postpone a decision. It also seeks
to reduce incorrect decisions at the model level by finding
a trade-off between decision-making attributes like accuracy,
generality, and uncertainty. The authors focused on three-way
decisions using two probabilistic rough set models: game-
theoretic rough sets (GTRS) and information-theoretic rough
sets (ITRS). RoughDroid [5] is a floppy analysis technique
proposed by the authors that can detect Android malicious
programs straight on the smartphone. It is based on seven
feature sets extracted from the XML manifest file of an
Android application and three feature sets extracted from
the Dex file. Those feature sets pass through the Rough Set
algorithm to classify the app either as benign or malicious. In
this paper, we propose to specially focus on malware motif
production and handling the “false” produced ones that may
lead to data inconsistency. We genuinely propose to handle this
challenging task and address it by evolving effective malicious
motifs, a succession of frequent Application Programming
Interface (API) call sequences, and exploit them afterwards
in a bilevel-based method in order to produce detection rules
capable of detecting them. In this work, we aim to attend the
following contributions:

• Generate fraudulent motifs and then exploit them to
produce robust detection rules by adopting a bilevel
architecture where two Evolutionary Algorithms (EAs),
an outer one (Genetic Programming algorithm (GP)) and
an inner one (Genetic Algorithm (GA)), are in a mutual
competition.

• Inspect the generated fraudulent motifs, which are gener-
ated by the inner algorithm within the second layer using
the GA, using the Variable Precision Rough Set (VPRS)
model before sending them to the outer algorithm within
the first layer, i.e., the GP.

• Demonstrate the benefits of the selection made by VPRS
reinforced by the bi-level competition between both algo-
rithms since for every detection rule, there exists a whole
search space of possible generated malicious motifs that
should be effectively sampled to come up with fit and



challenging generated motifs that positively affect the
detection quality of the corresponding first layer rule.

• Evaluate the outperformance of our ProRSDet approach
compared to several state-of-the-art detection methods
in terms of accuracy maximization and false alarms
minimization.

The remainder of this paper is structured as follows: Section
II emphasizes past work that is most similar to our approach.
The fundamentals of BLOP and VPRS used in this work are
presented in Section III. Our suggested detection method is
described in Section IV. The experimental setup and perfor-
mance analysis results are presented in Section V. Finally,
the conclusion and a description of some future directions are
presented in Section VI.

II. RELATED WORK

Different malware detection techniques [6], [7], [8] have
been proposed in literature focusing, particularly, on gen-
erating new malware. These can be categorized into two
heads. A first category is based on using machine learning
based approaches and second category based on the use of
evolutionary algorithms.

Among the works proposed in the first head, we mention
the work of [9] where an Android malware detection system
(DroidEvolver) was proposed that can automatically update
itself during malware detection using online learning tech-
niques with evolving feature set and pseudo labels. There were
some methods which were based on generating adversarial
samples. Among these, we mention, the work proposed in
[10], where the feasibility of generating adversarial samples
specifically through the injection of system API calls was
investigated. In [11], a generative adversarial network based
algorithm (MalGAN) was proposed to generate adversarial
malware examples able to bypass black-box machine learning
based detection models. The paper of Moti et al. [12] presented
a deep generative adversarial network to generate the signature
of unseen malware samples; the generated signature is poten-
tially similar to the malware samples that may be released in
the future.

Other works proposed automated signature generation sys-
tems, such as the work proposed in [13], where a system
for automatic generation of intrusion signatures from honey
net packet traces was developed. The work of [14], proposed
an automated approach called “content sifting” that generates
precise signatures that can then be used to filter or moderate
the spread of a worm. In [15], a string signature generation
system (Hancock) was designed to create a minimal set of
N-byte sequences from a set of malware samples. Another
work, the work of [16], used a 5-gram Markov chain model
of good software to estimate the probability that a given byte
sequence would show up in good software. In the paper of
Li et al. [17], a network-based automated signature generation
system (Hamsa) for polymorphic worms was proposed. The
proposed model allowed to analyze the invariant content
of polymorphic worms in order to make analytical attack-
resilience granted for the signature generation algorithm. In

[18], Newsome et al. proposed a signature generation system,
Polygraph, that produces signatures that match polymorphic
worms. Polygraph generates signatures that consist of multiple
disjoint content sub-strings and which typically correspond
to protocol framing, return addresses, and poorly obfuscated
code.

Within the second head, several works [19], [20], [21], [22],
[23], focused on applying evolutionary algorithms to generate
malware samples. Among the most recent and efficient ones,
we mention the work of [24], where an Android Malware
Detection System (AMD) was proposed that produces patterns
using a GA in order to mimic real malware patterns. This is to
keep the dataset used in the conception of the detection system
as varied as possible, which allows AMD to be resistant to
obfuscated malware. Also, the work of [23], opted for a system
using co-evolutionary algorithms where a first population
generates detection rules, and a second population generates
artificial malware. In this work, both populations are executed
in parallel without any hierarchy. In the works of [25], [26],
authors adopted a co-evolutionary algorithm as a search engine
to ensure better detection rules.

Despite the good reached results of the above mentioned
state-of-the-art methods, they still suffer from some limita-
tions. First, they refer to a limited number of malware samples
which makes the produced base of malicious malware not
varied enough which cannot be of much help for a detection
system when facing real attacks. Second, there is no check of
the structure of the generated malicious patterns as to be sure
enough that they fit among the real samples. And third, the
malware generation and detection tasks are achieved separately
without interaction which leads to a lack of a “harmony” and
hence creates an incompatibility between the tasks.

In in paper, we will introduce our newly developed ProRS-
Det malware detection technique that overcomes the state-of-
the-art shortcomings via the hybridization of both evolutionary
algorithms and the Variable Precision Rough Set model.

III. BLOP AND VPRS BASIC CONCEPTS

In this section, we introduce the main concepts and fun-
damentals of both BiLevel OPtimization and the Variable
Precision Rough Set model as two tools, used in a hybrid
fashion, to ensure the development of our proposed ProRSDet.

A. BiLevel OPtimization

BLOP is a distinctive optimization process where one prob-
lem is embedded within another. The inner problem, which is
also referred to as the lower-level task, represents a constraint
of the outer problem, which is also referred to as the upper-
level task, where only an optimal lower-level solution can be a
possible solution to the upper-level one. Each level has its own
fitness function to optimize where the considered solutions of
each level affect the decision-making space of the other one.
The technical formalization of a BLOP problem can be found
in [27] and it can be presented as follows:

A BLOP contains two classes of variables: (1) the upper-
level variables x ∈ X ⊂ Rn, and (2) the lower-level variables



Fig. 1. Representation of a bilevel optimization problem (Inspired by [28])

y ∈ Y ⊂ Rm. For the follower problem, the optimization
task is performed with respect to the variables y while the
variables x act as fixed parameters. Thus, each x corresponds
to a different follower problem, whose optimal solution is a
function on Y and needs to be determined. All variables (x, y)
are considered in the leader problem for given values of y (y∗).
In what follows, we give the formal definition of BLOP.

Assuming L : Rn×Rm → R to be the leader problem and
f : Rn ×Rm → R to be the follower one, a BLOP could be
defined as follows:

min
x∈X,y∈XL

L(x, y) subject to

{
Gk(x, y) ≤ 0, k = 1, . . . , K.
y ∈ argmin{f(x, y)|
gj(x, y) ≤ 0, j = 1, . . . , J}

(1)

In the given formulation, L represents the first layer objec-
tive function, f represents the second layer objective function,
x represents the first layer decision vector and y represents
the second layer decision vector. Gk and gj represent the
inequality constraint functions at both layers, respectively. The
representation of a bilevel optimization problem is illustrated
in Figure 1.

B. Variable Precision Rough Set

VPRS [29], an extension of RST, is a mathematical tool
that deals with inconsistent information and came mainly
to overcome the maybe found strictness within the rough
set notions which may be too restricted in the sense that
they ignore the degree of an overlap between a set and a
concept. Let us consider a universe of objects U referred
to as elementary events and let s(U) be the ∂ − algebra of
measurable subsets of U referred to as random events. It is
presumed that new objects e belonging to the universe are
generated by a random process (on U). For each new object
e, the event X ∈ s(U) occurred if the object e ∈ X . In
addition, it is presumed the existence of the prior probability
function P assigning probabilities P (X) to sets X belonging
to s(U). P (X) > 0 means that all members of the family of
sets s(U) are likely to occur, and, P (X) < 1means that their

occurrence is not certain. These assumptions are justified by
the fact that there is no need to construct a predictive model
for events about which it is known that they are unlikely to
occur or that they do occur with certainty [29]. In the context
of defining the structure of rough approximation space, R
denotes an equivalence relation on U with the finite number of
equivalence classes (elementary sets) E1, E2, . . . , En such that
P (Ei) > 0 for all 1 ≤ i ≤ n. The assumption of finite number
of equivalence classes does not mean that the universe U is
finite. Each elementary set E can be assigned a measure of
overlap with the set X by the conditional probability function
defined as P (X | E) = P (X

⋂
E) / P (E). The values of the

conditional probability function are normally estimated from
sample data by taking the ratio P (X | E) = card(X

⋂
E) /

card(E). The VPRS generalization of the original rough set
model is based on the values of the probability function P
and two lower and upper limit certainty threshold parameters
l and u such that 0 ≤ l < P (X) < u ≤ 1. The requirement l
< P (X) is an extra constraint on the values of the parameters
which was proposed in [29]. The VPRS model is said to be
symmetric if l = 1− u. In this study, the symbol β such that
0 < P (X) < β ≤ 1 is used instead of the symbol u to denote
the model upper threshold parameter. Also, the symbol α will
substitute the previously defined l parameter.

IV. PRORSDET: THE VARIABLE PRECISION ROUGH SET
MALWARE DETECTION TECHNIQUE

Figure 2 depicts ProRSDet’s overall running process, which
is divided into two principal layers (levels): (1) First layer is
built on a GP with the goal of generating a set of effective
detection rules (FDRB) and (2) Second layer relies on a GA
to generate harmful (malicious) motifs (SHM ) (first step) and
on a VPRS based component that exclusively preserves the
most dependable set of harmful motifs with no structural flaws,
referred to as “Relevant” motifs (FMM ) (second step).

Each of these two layers runs through a series of iterations
in order to find the optimal solutions in both levels, which are
interdependent. As presented in Figure 2, the evaluation of
every upper detection rule solution (among DRB) requires
running a search algorithm to find the best undetectable
harmful motifs (FMM ) by this rule. The final set of detection
rules produced by our ProRSDet (FDRB) is a set of detection
rules that will perform the malware detection task.

1) First layer: The first layer’s first step, as shown in Figure
2 and Algorithm 1, is to generate a set of detection rules
(Algorithm 1, line 1), which will go through an evaluation
procedure (Algorithm 1, lines 2-3). The coverage of the base
of samples (input) as well as the coverage of the fraudulent
motifs created by the second layer are used to make this
evaluation. These two measures are used to be maximized by
the population of detection rules solutions (Algorithm 1, lines
4-6). This module produces a collection of final detection rules
(FDRB) that will be used by the detection job, which is in
charge of classifying new apps as malicious or benign. The GP
evolutionary operators require a specific formalization to cope



Fig. 2. Illustration of the ProRSDet functioning process.

with the generated solutions (i.e., the detection rules) by the
first layer that relies on a GP process. These are the following:

• Solution representation: The solution is expressed as a
series of terminals that relate to various motifs (API call
sequences) and functions (Intersection (AND) and Union
(OR)), respectively.

• Solution variation: By selecting one of the functions or
terminals at random, the GP mutation operator is applied.
If a terminal is selected then it is replaced by another
terminal; if it is a function then it is replaced by a new
function. As for the GP crossover operator, two parent
individuals are selected, and a sub-node is picked on each
selected parent. The crossover swaps the nodes and their
related sub-nodes from one parent to the other.

• Solution evaluation: An individual’s encoding is quanti-
fied using a mathematical metric called the “fitness func-
tion”, which measures the quality of a proposed detection
rule and fraudulent motifs. For the GP adaptation, we
used the fitness function fouter defined in Equation 2 to
evaluate detection-rules solutions (DR).

fouter(DR) = Max(

Precision(DR)+Recall(DR)
2 + #damp

#amp

2
)

(2)
where #damp refers to the number of detected fraudulent
motifs and #amp refers to the number of fraudulent
motifs and

Precision(DR) =

∑p

i=1
DRi

t
, Recall(DR) =

∑p

i=1
DRi

p
(3)

Algorithm 1 Outer Algorithm (First layer)
Input: SMM : set of malicious motifs, SBM : set

of benign motifs, FMM : set of “Relevant” fraudulent
motifs, NDR: number of detection rules, NFM : number
of “Relevant” fraudulent motifs in SHM , NF : number
of iterations in the first layer, NS: number of iterations
in the second layer

Output: Final set of detection rules
FDRB

DRB0 ← Initialization(NDR,SHM ,SBM ) /*First genera-
tion of detection rules*/

2: for each DR0 in DRB0 do /*DR means detection rule*/
SFM0 ← FMGeneration(DR0,FMM ,NFM ,NS) /*call second

layer*/
DR0 ← Evaluation(DR0,SHM ,SFM0)

4: end for
k ← 1

6: while k < NF do
Qt ← Variation(DRBt−1 )

8: for each DRt in Qt do /*Evaluate each rule based on upper fitness
function*/

DRt ← OuterEvaluation(DRt,SHM )
10: SFMt ← FMGeneration(DRt,SHM ,NFM ,NS)

DRt ← EvaluationUpdate(DRt,SFMt)
12: end for

Ut ← Qt∪ DRBt

14: DRBt+1 ← Selection(NDR,Ut)
k ← k+1

16: end while
FDRB ← FittestSelection(DRBt)



p is the number of detected malicious motifs after exe-
cuting the solution, i.e., the detection rule, on the base of
malicious motifs examples (SMM ), t is the total number
of malicious motifs within SMM , and DRi is the ith

component of a detection rule DR such that:

DRi =

{
1 if the ith detected malicious motif exists in SMM
0 otherwise

(4)

2) Second layer: The generation process of “Relevant”
motifs (FMM , Algorithm 2, line 7) is performed as follows:

• Step 1: A GA is used to maximize the distance between
the generated malicious motifs (SHM ) and the refer-
ence benign motifs (input, not-generated motifs (SBM )
while minimizing the distance between the generated
malicious motifs (SHM ) and the reference malicious
ones (SMM ). The GA also increases the amount of
malicious motifs generated that are not detected by the
first layer, i.e., the detection rules (DRB) (Algorithm 2,
lines 1-5). The GA evolutionary operators need a special
formalization to deal with the manipulated solutions in
order to generate the motifs. The following are the
adopted formalizations:

– Solution representation: The GA solutions are rep-
resented as chromosomes made up of API call se-
quences. These are identifiable by their identifiers
(IDs) and defined by their class (labels), which
indicate their nature (malicious or benign), calling
depths, and a collection of binary values indicating
whether or not an API call appears in the entire API
call sequence.

– Solution variation: For the GA crossover operator,
two parent individuals (chromosomes) are chosen,
and a gene from each parent is chosen. Crossover
involves the transfer of genes from one parent to the
other. Only parents with the same nature can be used
with the crossover operator (malicious or benign).
The mutation operation starts by randomly selecting
a gene on the chromosome. The selected gene is then
replaced with another gene from the same class if it
belongs to that class.

– Solution evaluation: A fraudulent motif (FM ) is
evaluated based on the following GA fitness func-
tion:

finner(FM) = Max((#gamp−#dagmp)+

n∑
i=1

fQual(FMi))

(5)

where i ∈ [1, n]; n indicates the total number of
fraudulent motifs, and #gamp refers to the number
of fraudulent motifs and #dagmp refers to the
number of detected fraudulent motifs. The function
fQual() defined in Equation 6 ensures the diversifi-
cation of the fraudulent motifs.

fQual(FMi) =
Sim1 + Sim2 +Overlap(FMi)

3
(6)

Sim1 = Sim(MS,FMi) =

∑
MSj∈MSSim(FMi,MSj)

|MS|
(7)

where j ∈ [1,m];m indicates the total number of
malicious motifs. The similarity between the gen-
erated motif FMi and the malicious set of motifs
(MS).This measure of similarity needs to be maxi-
mized.

Sim2 = Sim(BS, FMi) =

∑
BSk∈BSSim(FMi, BSk)

|BS|
(8)

The similarity between the generated motif FMi

where k ∈ [1, p]; p indicates and the benign motifs
(BS) the total number of benign set of motifs and
which has to be the lowest.

Overlap(FMi) = 1−
∑

FMl,i̸=l Sim(FMi, FMl)

|FM |
(9)

Overlap() is measured as the average value of the
individual Sim(FMi, FMl) between the generated
motif FMi and all the other generated motifs FMl

in the generated dataset SFM . l refers to the total
number of the generated motifs.
We updated the Needleman-Wunsch alignment algo-
rithm formula [30] to our context to determine the
similarity Sim() between two motifs. This measure
of similarity was employed in the above equations
but with different parameters. A detailed description
of the similarity function Sim() can be found in [24].

• Step 2: The GA evolutionary operators mentioned above
may cause the manipulated solutions to be distorted, and
hence ambiguous, in different ways and with different
degrees. Technically, a set of motifs is declared to be
ambiguous when they share the same values of the fea-
tures (API calls) but do have different label values (ma-
licious/benign). An illustration of this ambiguity is pre-
sented in Table I. The manipulated motifs by the lower-
level are API call sequences. Each API call sequence is
named MFXi (as shown in Table I) and is composed of
different API calls named MLXj . A conflict (or incon-
sistency) may exist between objects (fraudulent motifs).
It is the case of the objects MFX7 and MFX9 because
they are indiscernible by condition attributes MLX1, . . . ,
MLXn and have different decision attributes (Nature)
(we assume that all attribute values MLXj are the same).
Similarly, another inconsistency exists between objects
MFX3 and MFX8.
To handle this ambiguity issue and to guarantee the
reliability of the generated malicious motifs, a VPRS
component, namely Variable Precision Rough Set Ana-
lyzer (VPRS Analyzer in Figure 3) which uses mainly



TABLE I
EXAMPLES OF AMBIGUOUS MOTIFS.

Malicious Condition attributes (API call)Decisionfraudulent
motifs MLX1MLX2 . . . MLXn (Nature)
MFX1 1 1 . . . 1 M
MFX2 0 0 . . . 0 M
MFX3 1 0 . . . 0 M
MFX4 1 0 . . . 1 M
MFX5 1 1 . . . 0 M
MFX6 1 0 . . . 1 M
MFX7 1 0 . . . 1 B
MFX8 1 0 . . . 0 B
MFX9 1 0 . . . 1 M
MFX10 1 1 . . . 0 B

Algorithm 2 Inner Algorithm (Second layer)
Input: SMM : set of malicious motifs, SBM : set of

benign motifs, DRB: set of detection rules, R: number of
generations, N : population size

Output: Set of Relevant generated motifs
FMM

SFM0 ← Initialization(SBM ,SMM ,N ,R) /*SFM means
set of fraudulent motifs*/

2: SFM0 ← Evaluation(SFM0,SBM ,SMM ,DRB)/*Evaluation de-
pends on DRB*/
k ← 1

4: while k < R do
Qt ← Variation(SFMt−1 )

6: Qt ← Evaluation(Qt,SBM ,SMM ,DRB)
Ut ← Qt ∪ SFMt

8: SFMt+1 ← Selection(N ,Ut)
k ← k+1

10: SHM ← FittestSelection(SFMt)
(RFM,AFM) ← RelevanceCheck(SHM )/*Set of relevant FM
and a set of ambiguous FM*/

12: SCFM ← LowerCertainty(AFM ) ∪ RFM
SPFM ← UpperCertainty(AFM )

14: (FCFM,FPFM)← Pruning(SCFM ,SPFM )
FMM ← FCFM ∪ FPFM

16: end while

the VPRS lower and upper limit certainty thresholds
concepts, is plugged to the inner algorithm. Specifically,
the VPRS Analyzer checks first the reliability of the
generated malicious motifs (SHM ). Among this set, the
VPRS Analyzer keeps the most relevant motifs (RFM )
which do not need any further check, and investigates the
remaining ambiguous set (AFM ). Among the AFM set,
the VPRS Analyzer calculates the lower limit certainty
threshold to only keep the certain set of fraudulent motifs
SCFM (Algorithm 2, lines 11-12), and the upper limit
certainty threshold to keep the approved fraudulent motifs
among the possible set of generated fraudulent motifs
SPFM , together with SCFM . During the pruning
operation (Algorithm 2, line 14), redundant motifs are
removed. Finally, the joint sets of FFM and FPFM
form the relevant, and the most relevant artificially gen-
erated fraudulent motifs (FMM ) (Algorithm 2, line 15).

As possible fraudulent motifs cannot be considered relevant
enough to be added to the initial set of malicious motifs, they
need further evaluation that reflects their quality and measures

Fig. 3. Second layer functioning process.

their reliability. For every possible fraudulent motif, the VPRS-
based component estimates its reliability using an index named
Relevance_Malicious_index, which is defined as the ratio
of the number of instances that belong to the possible set
and having the same structure with a malicious label, and the
number of the whole possible set of instances (Equation 10).

Relevance_Malicious_index =
Instance_Possible_Malicious_Motif

Instance_Possible_Original_Data
(10)

where Instance_Possible_Malicious_Motif refers to
the number of instances that share the same structure and are
labelled malicious and Instance_Possible_Original_Data
refers to the total number of instances within the whole
possible set. This index can, therefore, be viewed as the
probability of counting the ambiguous fraudulent motifs set
(the possible generated motif set) correctly. It shows the extent
to which a correct label can be given to a generated motif
belonging to the possible set of generated motifs. Tacking
into account that we are aiming to produce effective ma-
licious fraudulent motifs, we will only keep the generated
motifs that have a Relevance_Malicious_index > 50%.
An illustrative example of this index is given below: Sup-



pose that when generating 123 new fraudulent motifs, 100
among them were labelled as malicious and 23 were labelled
as benign. The Relevance_Malicious_index of those 123
possible generated motifs is (100/123). This means that the
Relevance_Malicious_index = 81,30% which is clearly
greater than 50% and hence the common shared structure of
these generated motifs will be added to the set of malicious
motifs sent to the outer algorithm.

3) Detection task based on detection rules: Throughout this
phase, our model will perform its classification task where a
new app, the executable, will be classified either as a malware
or as a benign. This is achieved using the set of detection
rules (FDRB). Formally, the first step aims to extract the
motifs of the executable. Each motif will be labeled as benign
or as malicious by comparing it to the motifs of the SMM
and SBM databases. Then, the obtained motifs are compared
to the antecedent of FDRB. The comparison will allow the
executable to be either classified as a malware or as a benign
app.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup
An experimental investigation was done to evaluate ProRS-

Det’s performance in detecting new malware variants. For
this purpose, we gathered data from a variety of sources (the
theZoo dataset1, from VirusTotal2) and from various portable
benign tools such as Google play. We have gathered 5 540
Android apps where 3 440 are malicious and 2 100 apps are
benign files. From those apps, a total of malicious motifs
and a total of benign motifs were extracted. The conducted
process is summarized in Table II. The Drebin dataset [31],
which contains 123 453 benign applications and 5 560 malware
samples, is used for the evaluation of our approach against
the new variants of malware and 0-day attacks. The necessity
for confirmation that ProRSDet is not fitting the base of
examples led to the selection of a dataset that is different
from the one used for the construction phase. For comparisons,
various state-of-the-art methods were investigated. These are
the classical classifiers named in Table V, tested using Weka
with the proposed default parameters settings, three known
methods (Rathore et al. [32], Gym-plus [33], and AMD [24]),
and several commercial antimalware named in Table VII. The
comparison made with the two recent state-of-the-art methods
([32] and [33]) is justified by the fact that those approaches
are somehow similar to ProRSDet. In fact, there are common
traits between our developed approach and those approaches:
they propose a two-task solution (a malware generation task
and a malware detection task). Also, to ensure the fairness
of comparisons between evolutionary approaches (AMD [24]
and ProRSDet), we used the parameter settings described in
Table III.

Both evolutionary approaches perform 798 000 function
evaluations in each run. Also, to help determine the most

1https://thezoo.morirt.com/
2https://www.virustotal.com/gui/home/upload
2https://www.cs.waikato.ac.nz/ml/weka/

TABLE II
NUMBER OF OBTAINED MOTIFS.

Number of apps Number of motifs
Benign 2 100 28 019 663

Malicious 3 440 36 995 382

TABLE III
EVOLUTIONARY PARAMETERS.

ProRSDet AMD
Population size (both levels) 30 180
Generation size (both levels) 30 4500
Mutation rate 0.5 0.5
Crossover rate 0.9 0.9

appropriate α and β values, a set of experiments is conducted
and the results are reported in Table IV. Indeed, Table IV
shows that the best results were reached with a pair of α
and β value that equals 0.5, respectively. When running the
experiments, we concluded that the fitness functions become
stabilized around the 36th generation. For these reasons, the
algorithms did not suffer from premature convergence. The
metrics used for the evaluation are: true positives (TP), false
positives (FP), true negatives (TN), false negatives (FN),
recall (RC), specificity (SP), accuracy (AC), precision (PR),
F1_score (FS), and the Area Under the Receiver Operating
Characteristics (ROC) Curve (AUC). All of the conducted
experiments, based on a 10-fold cross validation, are run on
an Intel

®
Xeon

®
Processor CPU E5-2620 v3, with a 16 GB

RAM.

B. Results Analysis

In this section, we compare the ProRSDet obtained results to
a set of classifiers (Table V), three state-of-the-art approaches
(Rathore et al. [32], Gym-plus [33] and AMD [24]) and five
antivirus engines (Table VI and Table VII). More precisely, to
determine how accurate our predictive model will perform in
practice, we used 10-fold cross-validation. We considered all
of the collected programs and hence all of the obtained motifs
stored in SBM and SMM (see Table II). So, concerning the
comparison with the top-five classifiers (Table V), and based
on all of the evaluation metrics, ProRSDet surpasses all other
classifiers. In comparison to the LDA and J48 classifiers,
which produced the second best results among the rest of the
classifiers with a pair of precision and accuracy of (98.36%,
97.82%) for LDA and (97.73%, 96.58%) for J48 and a pair
of F1_score and specificity of (97.32%, 97.31%) for LDA and
(98.37%, 97.13%) for J48, ProRSDet achieved a precision of
98.20%, an accuracy of 98.22%, an F1 score of 98.21%, and
a specificity of 98.20%. These remarkable ProRSDet results
are based on its high true positives (98.20%) and low false
positives (1.80%), which are the best achieved values among
the results of the classifiers. These encouraging findings show
that ProRSDet is capable of distinguishing between the two
possible designations (malicious and benign). Also, regarding
the comparison between the EA-based approaches (ProRSDet
and AMD [24]), we used an unknown dataset (Drebin dataset

https://thezoo.morirt.com/
https://www.virustotal.com/gui/home/upload


TABLE IV
VPRS PARAMETERS.

RC SP AC PR FS AUC FPR FNR

Experiment 1 α = 1 97.56 97.02 97.29 97.01 97.28 80.01 02.99 02.42
β = 0

Experiment 2 α = 0.85 96.68 97.66 97.17 97.69 97.18 82.13 02.31 03.28
β = 0.15

Experiment 3 α = 0.7 96.66 97.07 96.87 97.09 96.87 73.80 02.91 03.35
β = 0.3

Experiment 4 α = 0.5 97.99 97.32 97.66 97.31 96.65 87.00 02.69 01.99
β = 0.5

[31]) and ProRSDet outperformed AMD in terms of the used
evaluation metrics as stated in Table VI. This can be explained
by the contribution brought by the VPRS Analyzer which
helped keep the most “relevant" malicious motifs.

Moreover, we may derive from Table VI and Table VII
that, when compared to competing state-of-the-art approaches,
(Rathore et al. [32], Gym-plus [33] and AMD [24]) using
the unknown dataset [31], ProRSDet came in top with an
accuracy of 97.66%, a specificity of 97.32%, a recall of
97.99%, a precision of 97.31%, and an AUC of 86.15%.
Rathore et al., Gym-plus and AMD, obtained an accuracy of
93.81%, 93.50% and 92.28%, respectively, which are lower
than those obtained by our proposed technique. In addition,
the interesting detection results obtained by ProRSDet are
endorsed by the results presented in Table VII which refers to
the comparison with the commercial antivirus engines. Table
VII shows that ProRSDet reached an accuracy rate of 97.66%
whereas the ESET NOD32 engine, which is ranked first among
all the other malware antivirus engines, registered only 66.68%
of accuracy. It is to be noted that the accuracy values of
the four remaining antivirus engines varied approximately
between 56% and 66%.

The results reported from Tables V, VI and VII highlight
the ability of ProRSDet – thanks to its set of efficient produced
rules which are generated using the most relevant set of
the generated fraudulent malware; both guaranteed via the
use of the BLOP architecture and the VPRS component
– to achieve accurate detection operations against new and
unknown variants of malware.

To better clarify the efficiency and benefits of relying on the
bilevel architecture within ProRSDet, we analyse the results in
terms of false positive and the false negative rates. The regis-
tered ProRSDet values of those two metrics (Table VI) confirm
the usefulness of a bilevel architecture to detect a malicious
code efficiently. The continuous competition between both
levels (first layer and second layer) permitted generation of
good solutions (detection rules and fraudulent motifs) and this
had positive impact on the values of FPR (02.69%) and FNR
(01.99%). In comparison to ProRSDet, the registered FPR and
FNR values for AMD [24], which rely on a single-layer based
architecture via the use of evolutionary algorithms, are 06.37%
and 08.84%, respectively. In addition, referring to Table VIII,
we can state that the Variable Precision Rough Set based
module succeeded to set apart 198 522 ambiguous instances
(possible set) among the generated fraudulent motifs SHM

(468 000 instances). More precisely, a set of 92 689 of false
motifs were removed from the whole set of ambiguous motifs.
The removal of those false motifs was performed thanks to
the Relevance_Malicious_Index and after being processed
by the lower and upper limit certainty thresholds explained
and illustrated in Section IV-2. This distinction brings to light
the VPRS component’s important contribution in improving
the quality of the fraudulent motifs by the second layer and
which, consequently, positively affected the false alarms rate.
Let us recall that ProRSDet provides a set of robust detection
rules thanks to the set of malicious motifs produced by the
second layer’s GA reinforced by the VPRS module. The VPRS
module helps determine the set of “certain" malicious motifs
and the set of “possible" malicious motifs. When dealing with
this set of possible motifs, a Relevance_Malicious_index
(Equation 10) that estimates the reliability degree of each
possible malicious motif is also provided to the user (as
presented in Section IV-2). This metric, specific to the evalu-
ation of each possible malicious motif, will help determine
the fate of this specific motif: add it to the set of mali-
cious motifs or remove it. To be more specific, Figure 4
represents the number of the obtained possible malicious
motifs with regards to their Relevance_Malicious_index.
Figure 4 shows that 51.28% of possible malicious motifs
have a Relevance_Malicious_index that exceeds 50%. Also,
17.98% of possible rules succeeded to correctly classify apps
with rates that lie between 41% and 50%. 18.23% of those
rules ranked just below with a Relevance_Malicious_index
comprised between 31% and 40%. Approximately only 13% of
the rules failed to have a Relevance_Malicious_index above
30%. An example of the use of this index was previously given
in Section IV-2. Also, an important aspect in our proposed
ProRSDet approach that needs to be clarified concerns the
setting of the α and β VPRS parameters. In fact, in this study
we adopted the the trial and error method which consists of
choosing randomly values and apply them in our algorithm.
For instance, we conducted four different experiments (Table
IV) which helped us determine the best pair of α and β
values that leads to better detection results. More precisely,
we tried different combination of α and β values and each
time we assessed the recall (RC), specificity (SP ), accuracy
(AC), precision (PR), F1_score (FS), Area under ROC curve
(AUC), false positive rate (FPR) and false negative rate
(FNR). The best values were reached with α = 0.5 and β =



TABLE V
COMPARISON BETWEEN PRORSDET AND THE CLASSICAL CLASSIFIERS.

Classifier/ TP FP TN FN RC SP AC PR FS AUC FPR FNRapproach
ProRSDet 98.20 01.80 98.24 01.76 98.23 98.20 98.22 98.20 98.21 86.79 01.80 01.76

LR 93.81 06.19 96.75 03.25 96.65 93.98 95.28 93.17 95.60 63.69 06.01 03.34
NB 92.30 07.70 28.41 71.59 56.31 78.67 60.35 92,37 93,62 65.06 02.13 09.03
RF 97.41 02.59 95.90 04.10 96.00 98.37 97.16 97.36 97.17 73.04 02.62 04.03
J48 97.18 02.82 93.98 06.02 94.27 97.13 96.58 97.73 98.37 83.90 02.91 05.83

k-NN 89.52 10.48 95.21 04.79 94.92 90.08 92.37 85.74 90.56 57.69 09.91 05.07
LDA 97.29 02.71 98.36 01.64 98.34 97.31 97.82 98.36 97.32 75.96 02.68 01.65

LR: Logistic Regression; LDA: Linear Discriminant Analysis; RF: Random Forest;
J48: Decision Tree; NB: Naive Bayes; k-NN: k-Nearest Neighbours.

TABLE VI
COMPARISON BETWEEN PRORSDET AND AMD [24] USING THE DREBIN DATASET [31].

Classifier/ TP FP TN FN RC SP AC PR FS AUC FPR FNRapproach
ProRSDet 97.31 02.69 98.01 01.99 97.99 97.32 97.66 97.31 96.65 86.15 02.69 01.99

AMD 93.80 06.19 90.90 09.10 96.20 92.70 92.28 93.60 92.37 57.69 06.37 08.84

Fig. 4. Number of possible motifs with regards to the Relevance_Malicious_index.

TABLE VII
ACCURACY RESULTS OF PRORSDET AND TOP FIVE COMMERCIAL

ENGINES BY VIRUSTOTAL 3 ON THE DREBIN DATASET [31].

Anti-malware Reference Accuracy (%)
ProRSDet Our current approach 97.66
ESET NOD32 https://www.eset.com 66.68
AegisLab www.aegislab.com 66.23
NANO antivirus http://www.nanoav.ru 66.23
VIPRE https://www.vipre.com 62.53
McAfee https://www.mcafee.com 56.21
Gym-plus [33] 93.50
Rathore et al. [32] 93.81 (with RF)

0.5. Indeed, we specifically registered an AC of 97.66%, a PR
of 97.31% a FPR of 02.69% and a FNR of 01.99%. Those
significant values found their way thanks to great reached
percentages of true positives and true negatives.

TABLE VIII
NUMBERS OF RELEVANT AND AMBIGUOUS GENERATED MALICIOUS

MOTIFS.

Number of generated motifs in ProRSDet
Possible instances Certain instances

False motifs Approved motifs
92 689 105 833 269 478

VI. CONCLUSION AND FUTURE DIRECTIONS

In this research, we developed ProRSDet, a malware detec-
tion technique that combines the Variable Precision Rough Set
model and bilevel optimization. Within the bilevel architecture,
the malware generation task (inner algorithm or second layer)
and the rules generation task (detection task, outer algorithm
or first layer) are in mutual competition. The second layer
generates “Relevant” malicious motifs which are generated by
a GA and thoroughly checked by a VPRS component that
only keeps the most “pertinent” ones, and which are capable
of eluding the GP’s set of detection rules in the first layer.

https://www.eset.com
www.aegislab.com
http://www.nanoav.ru
https://www.vipre.com
https://www.mcafee.com


These effective created detection rules, in turn, attempt their
hardest to detect the second layer’s set of fraudulent patterns.

ProRSDet outperformed a variety of state-of-the-art ap-
proaches and commercial engines, achieving encouraging de-
tection rates of 97.66% accuracy and 2.69% false positives.
We plan to investigate other methods to help determine the
best values of α and β concerning the VPRS. It would be
interesting to design an adaptive parameter tuning strategy that
aims to approximate the best values of the VPRS parameters.
Also, we can consider other theories that deal with the
inconsistency in the future (i.e., [34], [35]), as well as consider
expanding the scope of the proposed work to encompass other
operating systems.
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