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Does disaggregated renewable energy stimulate economic growth? The role of 
spatial effect
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ABSTRACT
This study attempts to empirically investigate the validity of energy-led growth hypothesis for 
renewable energy sources for developing countries. To this end, this paper estimates the impacts 
of disaggregated renewable energy sources on economic growth within a multivariate framework 
including the disaggregated non-renewable energy sources, capital, labour, institutional quality 
and human capital by using panel data of 32 lower/upper middle income countries over the period 
2009 to 2019 and applying spatial dynamic techniques. Our results show the significantly positive 
impacts of individual renewable sources on economic growth. This study provides the first piece of 
evidence of spatial spillover effects from renewable energy on economic growth for developing 
countries. Our analysis reveals the significantly negative impacts of hydroelectricity on economic 
growth. Our analysis also confirms the importance of labour, institutional quality and human 
capital in driving economic growth.
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I. Introduction

Non-renewable energy has been traditionally con-
sidered as a vital driver of economic growth in 
developing countries (Polat 2021). However, the 
heavy dependence on fossil energy sources has 
induced the growing concerns over energy supply 
security, volatility of energy prices and environmen-
tal consequences associated with energy production 
and consumption (Apergis and Payne 2012). These 
concerns have forced developing countries to sub-
stitute fossil energy sources with renewable energy 
sources (Jha and Singh 2020). On the one hand, 
energy transition is considered as a mitigation strat-
egy that developing countries do need to apply in 
order to respond to the worldwide environmental 
security challenge expressed through the 2015 Paris 
agreement on climate change. On the other hand, 
energy transition is a widely accepted pathway 
towards sustainable growth for developing coun-
tries. As a result, development of renewable energy 
as a means of mitigating climate change while main-
taining economic growth is currently shaping an 
important policy agenda for developing countries.

Over the past decades, many developing coun-
tries have made common effort of increasing 
investment in renewable energy (Alam et al.  
2017). According to the Renewable Global Status 
Report (2016), the investment in renewables in 
developing countries increased to USD 156 billion 
in 2015 from USD 20 billion in 2005. The total 
investment in renewables in developing countries 
even began to exceed that in developed countries in 
2015.1

However, the development of renewable energy 
implies high investment costs, partly due to the 
intermittent nature of some renewable energy 
sources (Marques and Fuinhas 2012). In addition, 
the observed increase in the share of renewables in 
current energy mixes does not yet make it possible 
to compensate for the associated loss in the capa-
city for producing electricity from fossil fuels 
(Marques and Fuinhas 2012). Both high invest-
ment costs of renewable energy and low fossil 
energy use may induce a serious drag on economic 
growth that eliminates the positive influence of 
renewable energy technological progress on 

CONTACT Huijie Yan yanhan@hotmail.fr Paris-Saclay University, Guyancourt, France
1The report also revealed that the top ten renewable energy investors consisted of six developing countries and four developed countries in 2015. The six 

developing countries are Brazil, China, India, Mexico, the Russian Federation and South Africa. The four developed countries include Chile, Germany, Japan 
and United States.
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economic growth. In this setting, the purpose of 
this study is to investigate whether and to what 
extent renewable energy sources contribute to eco-
nomic growth process in the developing countries. 
Our research seeks to provide rich policy implica-
tions for managing environmental and economic 
conflicts linked to renewable energy sources and 
for the design of efficient renewable energy policies 
in the quest for a sustainable energy system.

The energy-led growth hypothesis (i.e. energy 
consumption contributes to economic growth) 
has long been a subject of intense debate in the 
energy-growth literature.2 However, the empirical 
outcomes of the existing studies are still until now 
inconsistent with each other (Emirmahmutoglu 
et al. 2021).3 In contrast, the energy-led growth 
hypothesis for renewable energy sources has only 
recently been investigated (Apergis and Payne  
2012; Menegaki 2011). The effects of renewable 
energy sources on economic growth have not 
been fully examined (Inglesi-Lotz 2016). Hence, 
there is still a long way to go before achieving 
conclusive results as to the validity of the energy- 
led growth hypothesis for renewable energy 
sources. In addition, most of the earlier studies 
focus on developed countries due to the availability 
and reliability of data, while with limited emphasis 
on developing countries, even though the invest-
ment in renewable energy in developing economies 
mushroomed over the near past. Therefore, addi-
tional research explaining the impact of renewable 
energy on economic growth of developing coun-
tries is warranted. In this context, this study con-
tributes to the scant literature on the topic in three 
different aspects.

Firstly, this paper focuses on exploring the 
impacts of disaggregate renewable energy sources 
on the economic growth of developing countries. 
This kind of studies is essential given the important 

policy implications, that is, the policy makers are 
suggested to formulate different strategies for each 
renewable energy source in order to achieve sus-
tainable economic growth (Dogan 2016).4 

Moreover, the use of disaggregate renewable 
energy data allows for capturing the extent to 
which different countries depend on different 
energy resources. However, the studies identifying 
the effects of disaggregate renewable energy 
sources on economic growth are very scarce 
(Ohler and Fetters 2014).5 Therefore, a further 
study on the impacts of disaggregate renewable 
energy in the developing countries is still necessary.

Second, this paper adds to the scant literature by 
considering simultaneously the disaggregated 
renewable and non-renewable energy sources. 
This consideration allows us to identify the dissim-
ilar effects of energy sources in enhancing the eco-
nomic growth prospects of developing countries 
and analyse the substitutability between renewable 
and non-renewable energy sources (Apergis and 
Payne 2012). The previous studies have largely 
omitted to include the disaggregated non- 
renewable energy alongside renewable energy, 
although this omission may lead to the wrong 
conclusions and inconsistent results about the 
renewable energy-growth nexus (Apergis and 
Payne 2012; Marques and Fuinhas 2012).6

Finally, this is the first piece of empirical cross- 
sectional analyses considering the role of spatial 
spillover effects for developing countries. The 
innovation on the model specification in the 
renewable energy-growth literature is necessary in 
order to avoid increasing the number of conflicting 
results and making the policymaking more uncer-
tain (Apergis and Tang 2013; Karanfil 2009; Ozturk  
2010). It has been recognized that the economic 
growth of one country depends on the growth and 
economic conditions of nearby countries (Basile  

2The energy-growth literature focuses on testing four hypotheses: the growth hypothesis (unidirectional causality from energy to economic growth); the 
conservation hypothesis (unidirectional causality from economic growth to energy); the feedback hypothesis (bidirectional causality between energy and 
economic growth); the neutrality hypothesis (no causality between energy and economic growth). See Apergis and Payne (2012) and Tugcu, Ozturk, and 
Aslan (2012) for a discussion in detail.

3The differences in sample periods, econometric methodologies and countries’ characteristics are considered as the main reasons of the rather conflicting 
results (Ozturk 2010; Tugcu, Ozturk, and Aslan 2012).

4In contrary, the results from the analysis of aggregate renewable energy cannot be generalized to disaggregate renewable energy and thus the policy 
suggestions based on this kind of studies are hard to implement (Fang and Chen 2017).

5To our knowledge, only the following two studies have provided disaggregated analyses for developed countries. Ohler and Fetters (2014) have provided 
empirical evidence by examining the causal relationship between individual renewable sources (including biomass, geothermal, hydroelectric, solar, waste, 
and wind) and economic growth using data from 20 OECD countries for the period 1990–2008. Armeanu, Vintila, and Gherghina (2017) have analysed the 
influence of disaggregate renewable energy (including biomass, hydropower, geothermal, wind and solar) on the economic growth of European Union (EU)- 
28 countries for the period of 2003–2014. These two studies highlight the importance of this new avenue of research.

6Among the studies reviewed, only one study, Long et al. (2015), differentiated between disaggregated renewable and non-renewable energy sources.
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2008). The spatial spillovers as a major engine of 
technological progress result from international 
trade, foreign direct investment, technology trans-
fers and human capital externalities (Ertur and 
Koch 2007; Radmehr, Henneberry, and 
Shayanmehr 2021). Another spatial effect arises 
from the fact that energy consumption pattern in 
one region could influence energy consumption in 
neighbouring regions and therefore, affects eco-
nomic growth of its neighbours (Fotis, 
Karkalakos, and Asteriou 2017). As 
a consequence, estimation procedures omitting 
the spatial effects may cause model misspecification 
problem, bias the estimated results and hence pro-
duce misleading conclusions about policy infer-
ences (Anselin 1988; LeSage and Pace 2009). 
Nevertheless, the idea of spatial spillover effects 
has been fully neglected by the existing literature 
on the topic focusing on developing countries.7

The paper is organized as follows. Section II 
describes the empirical analysis. Section III dis-
cusses the main results, and Section IV offers con-
cluding remarks and policy recommendations.

II. Methods

Empirical model and data

Empirical model
To investigate the impacts of renewable energy 
sources on economic growth, this study applies 
the following production function: 

Yit ¼ f Kit; Lit;REit;TEit;Xitð Þ (1) 

Where, Y denotes aggregate output, K represents 
capital stock, L stands for labour, RE and TE are 

respectively renewable and traditional energy 
sources, X denotes a vector of other control vari-
ables that consist of institutional quality and 
human capital, which potentially influence eco-
nomic growth. The subscript i denotes country 
and t denotes year. In this function, capital, labour 
and energy are treated as separate inputs. Capital, 
labour, institutional quality and human capital are 
included in the model in order to avoid omission 
bias problem (Adekoya et al. 2022; Ohler and 
Fetters 2014).8 The production function defined 
as Equation. (1) is extended to analyse the impacts 
of disaggregated energy sources on economic 
growth by replacing RE and TE with each indivi-
dual renewable and traditional energy sources.

Using log-linearization, Equation. (1) could be 
rewritten as: 

lnYit ¼ β0 þ β1lnKit þ β2lnLit þ β3lnREit
þ β4lnTEit þ β5lnINSTit þ β6lnHCit þ δi
þ δt þ εit

(2) 

Where β0 is the intercept, β1, β2, β3 β4,β5 and β6 are 
the coefficients which measures the output elasti-
cities with respect to capital stock, labour, disag-
gregated renewable and traditional energy sources, 
institutional quality and human capital respec-
tively, δi refers to individual fixed effect (regional 
dummies)9, δt correspond to time fixed effect (time 
trend)10, and εit is error term.

Data
The multivariate framework encompasses real GDP 
per capita (Y) in constant 2015 US $, real gross fixed 
capital formation per capita (K) in constant 2015 US $, 

7To our knowledge, only the following three studies have made important contributions by capturing the idea of spatial effects. Chica-Olmo, Sari-Hassoun, and 
Moya-Fernández (2020) investigated the spatial dependence between GDP and aggregated renewable energy consumption by using a spatial Durbin model 
with two-way fixed effects and focusing on 26 European countries over the period 1991–2015. Radmehr, Henneberry, and Shayanmehr (2021) explored the 
relationships among economic growth, aggregated renewable energy consumption and carbon emissions by applying spatial simultaneous equations 
models with a generalized spatial two-stage least squares method and analysing panel data from 21 European countries over the period 1995–2014. Cui, 
Weng, and Song (2022) investigated the spatial effects of both aggregated renewable energy consumption and financial inclusion on economic growth by 
employing a spatial Durbin model with fixed effects and using panel data from 40 countries for the period 2010–2020.

8Literature concerning economic growth has indicated that physical capital and labour are the conventional factors of economic production (see Arbex and 
Perobelli 2010). Numerous studies have documented the important role of institutional quality and human capital in economic growth (see Fang and Chen  
2017; Zallé 2019). Therefore, we incorporate capital, labour, institutional quality and human capital into the production process.

9The individual fixed effect is included in the model to control for time-invariant regional characteristics, which may affect both economic growth and 
renewable energy supply, such as resource endowment and climate conditions. The inclusion of individual fixed effect enables us to yield causal inference. 
We thank an anonymous reviewer for pointing out this issue. Regional dummies distinguish regions to which countries belong. All the countries in the sample 
are divided into Asian, African, European and American regions.

10The time fixed effect is incorporated into the model to account for time-dependent macro factors that may influence both economic performance and 
renewable energy supply capacity, such as, financial crises, external energy demand shocks, and changes over time in global energy prices. We use a linear 
time trend to control for time-specific factors.
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labour force per capita (L).11 These data are obtained 
from the World Bank’s World Development 
Indicators. Electricity production from biomass & 
waste (BIOM), or wind (WIND) measured in billions 
of kilowatt-hours as a proxy for disaggregated renew-
able energy source (RE). Disaggregated traditional 
energy source TE is defined as coal supply (COAL) 
or oil supply (OIL)12 measured in million tonnes of oil 
equivalent13 or hydroelectric generation (HYDR) 
measured in billions of kilowatt-hours.14 The data 
on BIOM, WIND and HYDR are drawn from the 
U.S. Energy Information Administration. The data 
on COAL and OIL are collected from the 
International Energy Agency.15 Following Zhang 
and Kim (2022), the institutional quality (INST) is 
measured by the arithmetic mean of all six dimensions 
of the World Bank’s Worldwide Governance 
Indicators, which include voice and accountability, 
political stability, government effectiveness, regula-
tory quality, rule of law and control of corruption.16 

Aggregating all the dimensions of governance into 
a single index helps to capture the joint impact of 
institutional quality. To capture variations in human 
capital across countries and time, we use the human 
capital index taken from the Penn World Table ver-
sion 10.0 database.17 Table 1 shows the definition of 
variables and data sources.

After identifying the variables used in this study, 
we collect their data. The selection of the countries 
and sample period are based on the availability of 
annual data, spanning the period 2009 to 2019.18 

Our sample is restricted to both lower and upper 
middle income countries based on the World Bank’s 
classification for the year 2019.19 Out of the 106 
countries categorized as lower/upper middle 
income, only 43 countries have data on the variables 
BIOM and WIND either for the entire period under 
analysis or for some years of the sample period.20 

During the data collection process, we find that 
there is no data available on some variables of inter-
est in the case of 10 countries.21 Thus, this leaves us 
with a sample of 32 countries.22 These countries are 
major global renewable electricity producers, collec-
tively accounting for over half of global renewable 
electricity production since 2017.23

After collecting their data, we implement the 
interpolation method to fill in the missing values 
of variables BIOM, WIND and COAL so as to 
obtain a balanced panel dataset.24 The missing 
values prevent us from running the spatial panel 
model because spatial econometrics need 
balanced panel data in order to take into account 
the spatial dependence at each point of time 
(Sanso-Navarro, Vera-Cabello, and Puente- 

11We divide the capital and labour variables by total population (extracted from World Development Indicators) to calculate the fixed capital per capita and 
labour force per capita.

12We could not include natural gas production in our analyses because of the large missing information in both the U.S. Energy Information Administration and 
the International Energy Agency datasets which severely restricts the number of countries available for analysis.

13We use 2022 conversion factors to convert coal supply and oil supply measured in terajoule into million tonnes of oil equivalent.
14We consider hydropower as a traditional energy source for two reasons. First, the development of hydropower unavoidably results in environmental risks, 

such as, forest ecosystem degradation and water quality deterioration. Second, hydropower has been a technically well-established energy source and has 
served as the foundation energy source for many countries. Thus, hydropower hardly reflects the advanced development of energy resources. We thank an 
anonymous reviewer for pointing out these issues.

15The U.S. Energy Information Administration database also contain data on coal production and petroleum and other liquids production. However, these data are 
largely unavailable for many countries (especially for developing countries) under our studied period. Thus the International Energy Agency database is preferred.

16We use percentile rank in order to avoid the possibility of negative or zero scores in the logarithm. The percentile rank ranging from 0 corresponding to lowest 
rank to 100 being the highest.

17Human capital index has been widely used in previous studies (see, e.g. Yao et al. (2019)).
18We choose 2009 as the starting period because the data on the variables BIOM and WIND are largely unavailable for the earlier period. We select 2019 as the 

ending year since the data on the variables COAL and OIL are available only until this year for most countries.
19Both lower and upper middle income countries are included in the sample in order to increase the sample size and better fulfil the requirements of the 

estimation method used in the next subsection. We do not consider low income countries in our analysis because the data for the variable WIND is missing for 
almost all the low income countries spanning 11 years (2009–2019).

20We allow countries with a maximum of six missing observations for each variable (BIOM and WIND), in whose case we interpolate the data. So the countries 
with gaps in excess of 6 years are excluded from the sample, like Bosnia and Herzegovina, and Lebanon.

21Concretely, the countries Azerbaijan, Ecuador, Fiji, Guyana, Moldova and Vanuatu are excluded from the sample due to the lack of data on coal supply over 
the entire studied period. In addition, Bulgaria, Cuba, Philippines and South Africa are excluded from the analysis for the missing human capital data.

22Cambodia is also not included in our sample, because the exact same values for the variable WIND are reported for all the 11 years under analysis. In detail, 
this study covers Argentina, Bangladesh, Belarus, Bolivia, Brazil, China, Colombia, Costa Rica, Dominican Republic, Egypt, Guatemala, Honduras, India, 
Indonesia, Iran, Jamaica, Jordan, Kazakhstan, Kenya, Mexico, Morocco, Nigeria, North Macedonia, Pakistan, Peru, Russian Federation, Serbia, Sri Lanka, 
Thailand, Turkey, Ukraine and Vietnam. Among these countries, 11 countries are located in Asia, 4 countries are located in Africa, 6 countries are located in 
Europe, and 11 countries are located in America. Thus, our sample covers countries with different geographical proximity.

23Authors’ own calculation based on data from U.S. Energy Information Administration. In detail, our sample of 32 countries collectively accounts for 44.5%, 
46%, 45.4%, 46.8%, 46.9%, 48%, 48.5%, 49.5%, 50.1%, 51.1%, and 52.2% of global renewable electricity production in 2009, 2010, 2011, 2012, 2013, 2014, 
2015, 2016, 2017, 2018 and 2019, respectively.

24The missing information rates of the variables BIOM, WIND and COAL are 6.25%, 6.82% and 1.99%, respectively.
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Ajovín 2020).25 In the end, our final balanced 
panel dataset covers 32 countries over the 11- 
year period from 2009 to 2019, resulting in 352 
observations.

The descriptive statistics for all the variables 
across the sample after the interpolation process 
are shown in Table 2.26 The correlation coefficients 
between disaggregated renewable energy sources 
and economic growth for all countries are reported 
in Table 3. This table suggests that BIOM/WIND 
and Y are highly positively and significantly corre-
lated with each other in the majority countries.27 

These results indicate that renewable energy 
sources play an important role in promoting eco-
nomic activities across most countries.

Estimation methods

Spatial dynamic panel model
We employ spatial dynamic panel models in order 
to simultaneously accommodate dynamic adjust-
ments and spatial dependence and thus produce 
more accurate and reliable estimation results (Hao 
and Peng 2017).

Equation. (2) could be extended to include spa-
tial interaction effects by specifying the following 
two spatial dynamic panel models: 

lnYit ¼ τlnYit� 1 þ ρ
Xn

j¼1
wijlnYit þ γxit þ σi þ σt þ φit

(3) 

and 

lnYit ¼ τlnYit� 1 þ ρ
Xn

j¼1
wijlnYit þ γxit

þ π
Xn

j¼1
wijxit þ σi þ σt þ vit (4) 

Where Yit� 1 is the real GDP per capita in country 
i at year t-1, xit is an matrix of explanatory vari-
ables, wij is an element of the spatial weights 
matrix, ρ is the spatial autoregressive coefficient, γ 
represents coefficients of the explanatory 
variables,π is spatial coefficient of the explanatory 
variables, σi is the individual effect, σt corresponds 
to time fixed effect, φit and vit are the independent 
and identically distributed random error term, τ 
represents beta convergence parameter.28

Before estimating the spatial dynamic econo-
metric models, spatial weight matrix which cap-
tures the spatial dependence structure across 
countries in our sample needs to be defined. In 
earlier studies of spatial econometrics, the spatial 
weight matrix was most commonly specified to 

Table 1. Definition of variables and data sources.
Variable Definition Data source

Y Real GDP per capita in constant 2015 US $ World Development Indicators
K Real gross fixed capital formation per capita in constant 2015 US $ World Development Indicators
L Labour force per capita World Development Indicators
BIOM Electricity production from biomass & waste measured in billions of kilowatt-hours U.S. Energy Information Administration
WIND Electricity production from wind measured in billions of kilowatt-hours U.S. Energy Information Administration
HYDR Hydroelectric generation measured in billions of kilowatt-hours U.S. Energy Information Administration
COAL Total coal supply measured in million tonnes of oil equivalent International Energy Agency
OIL Total oil supply measured in million tonnes of oil equivalent International Energy Agency
INST Average of six institutional indices in form of percentile ranks including voice and accountability, 

political stability, government effectiveness, regulatory quality, rule of law and control of 
corruption

Worldwide 
Governance Indicators

HC Human capital index, based on years of schooling and returns to education Penn World Table 10.0

Table 2. Descriptive statistics.
Variable Mean Std. Dev. Min. Max. Obs.

Y 5320.1 3264.7 931.99 14200 352
K 122032 80113 15597 434881 352
L 0.4394 0.0857 0.2435 0.5942 352
BIOM 4.918 14.71 0.001 121.1 352
WIND 8.598 39.46 0.001 406 352
HYDR 64.11 182.3 0.023 1254 352
COAL 82.87 341.3 0.0002 2071 352
OIL 48.19 96.6 0.8911 647.9 352
INST 38.11 12.26 14.69 72.67 352
HC 2.525 0.6577 1.162 3.613 352

25Therefore, we capitalize on the available data and interpolate the missing values by assuming a linear relation and using an inverse distance weight with the 
available value that is the nearest having the largest weight (Castañeda Rodríguez 2018). The missing values are estimated through interpolation with the 
help of the Stata command mipolate.

26We further compute coefficient of variation that is defined as the ratio of standard deviation to mean and used to measure the relative dispersion of the 
variables. In detail, the coefficient of variation for WIND, COAL, BIOM, HYDR, OIL, K, INST, HC and L are 4.589, 4.118, 2.991, 2.844, 2.005, 0.656, 0.322, 0.26 and 
0.195. Thus, WIND is the most volatile explanatory variable, followed in order by COAL, BIOM, HYDR, OIL, K, INST, HC and L.

27For example, the highest correlation value between BIOM and Y is found in China (0.9919), followed by Turkey (0.9589) and Mexico (0.9526). The highest 
correlation value between WIND and Y is found in Turkey (0.9936), followed by China (0.9912) and India (0.9840).

28If τ is statistically significant and inferior to 1, the beta convergence of real GDP per capita is confirmed.

APPLIED ECONOMICS 5



measure geographic proximity. The merit of geo-
graphical matrix is that it is indeed strictly exogen-
ous (Arbia, Battisti, and Di Vaio 2010). Recently, 
economic proximity has been introduced to cap-
ture neighbourhood between spatial units. The 
matrix based on economic attributes could mea-
sure the distance beyond the geographical notion 
that still play an important role in shaping the 
economic relationships across countries (Anselin  
2002; Arbia, Battisti, and Di Vaio 2010).

Recent literature has argued that international 
trade often serves as channels for economic trans-
mission across countries and countries are ‘eco-
nomically closer’ if they conduct a large volume 
trade with each other (Wang, Wong, and Granato  
2015). Thus, in line with Nan et al. (2022), our 
spatial analysis applies a spatial weight matrix that 
depends on intensity of bilateral trade flows so as to 
capture the economic interdependency among 
countries.29 The trade-intensity-based spatial 
weight matrix W kð Þ is defined as follows:30 

W kð Þ ¼
w�ij kð Þ ¼ 0 if i ¼ j

w�ij kð Þ ¼ TRij=
P

i�j
TRij otherwise

(

(5) 

Where w�ij is an element of unstandardized weight 
matrix W, and TRij represents total bilateral trade 
flows (import plus export) between country i and 
country j. Note that TRij is the average bilateral 
trade between country i and country j over the 
2009–2019 period.31 This weight matrix is standar-
dized such that the elements of a row sum up to 
one (i.e. row standardization).32

To check the robustness of the estimation 
results, we use a first-order queen contiguity weight 
matrix as an alternative form of the spatial weights 
matrix.33 The first-order queen contiguity weight 
matrix is binary and its element w�ijtakes value 1 if 
country i and country j share a common geo-
graphic border or vertex, and w�ij has a value of 0 
otherwise. All elements of this matrix are also 
standardized before use.

Table 3. Correlation between renewable energy and economic growth.
Countries Correlation Countries Correlation Countries Correlation

Biomass & waste Argentina −0.4751 Honduras 0.7747*** North Macedonia 0.3407
Bangladesh 0.9080*** India 0.9337*** Pakistan 0.4794
Belarus 0.8148*** Indonesia 0.9357*** Peru −0.0096
Bolivia 0.7493*** Iran 0.1221 Russian Federation 0.2876
Brazil 0.1518 Jamaica −0.5461* Serbia 0.8259***
China 0.9919*** Jordan 0.9031*** Sri Lanka 0.8252***
Colombia 0.9188*** Kazakhstan 0.1373 Thailand 0.9452***
Costa Rica 0.7279*** Kenya −0.7522*** Turkey 0.9589***
Dominican Republic 0.8565*** Mexico 0.9526*** Ukraine 0.0512
Egypt −0.7680*** Morocco 0.6645** Vietnam 0.8668***
Guatemala 0.9326*** Nigeria 0.6455**

Wind Argentina −0.0325 Honduras 0.8468*** North Macedonia 0.3131
Bangladesh 0.9127*** India 0.9840*** Pakistan 0.8686***
Belarus 0.6016** Indonesia 0.6273** Peru 0.8380***
Bolivia 0.4342 Iran −0.3338 Russian Federation 0.6200**
Brazil −0.0898 Jamaica 0.6127** Serbia 0.3886
China 0.9912*** Jordan −0.7475*** Sri Lanka 0.8849***
Colombia −0.1503 Kazakhstan 0.8764*** Thailand 0.9416***
Costa Rica 0.9767*** Kenya 0.8484*** Turkey 0.9936***
Dominican Republic 0.7967*** Mexico 0.9833*** Ukraine −0.0586
Egypt 0.9656*** Morocco 0.9797*** Vietnam 0.9425***
Guatemala 0.2985 Nigeria 0.5605*

***, ** and * denote a significance of 1%, 5% and 10%, respectively.

29Larger value of intensity of bilateral trade flows between two countries implies higher dependence between the countries.
30The choice of a spatial weight matrix is relatively subjective as it is not guided by economic theory (Hao and Peng 2017; Marbuah and Amuakwa-Mensah  

2017).
31To avoid the possible endogeneity problem, we follow Ertur and Koch (2011) by calculating the average bilateral trade over the 2009–2019 period. Data on 

trade flows for each country are taken from the UN Comtrade Database.
32Row standardization allows us to interpret the spatial spillover effects as an average of all neighbours (You and Lv 2018).
33The queen continuity criterion is one of the most popular criteria for creating geographic weight matrix in the existing literature (see e.g. Cho, Chen, and 

Poudyal 2010; Leiva, Vasquez-Lavín, and Oliva 2020, among many others).
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Estimation issue
System Generalized Method of Moments (GMM) 
estimator is applied to estimate Equation. (3) and 
Equation. (4) for several reasons.34 First, the system 
GMM estimator corrects for not only the endo-
geneity of the lagged dependent variable and the 
spatially lagged dependent variable but also the 
potential endogeneity of other explanatory 
variables.35 Thus, given the potential reverse caus-
ality between the explained and the explanatory 
variables, the system GMM estimator may yield 
consistent estimates of the desired causal effect.36

Second, the system GMM estimator controls for 
unobservable heterogeneity specific to countries 
which may affect both the dependent variable and 
the explanatory variables and thus ensure the relia-
bility of our causal estimates (Nkoa and Song  
2020). Third, the system GMM estimator performs 
better than the difference GMM estimator (Berk, 
Kasman, and Kılınç 2020).37 To overcome the 
drawbacks of the difference GMM approach, the 
system GMM approach estimates a system of two 
equations simultaneously: an equation in levels 
with lagged first differences as instruments, and 
an equation in first differences with lagged levels 

as instruments (Zheng et al. 2013).38 Fourth, the 
system GMM estimator is appropriate for short 
panel data (Roodman 2009).39 Finally, the system 
GMM estimator has been a popular estimation 
method for spatial dynamic panel models in the 
recent studies.40

Henceforth, accounting for the aforementioned 
problems, we use the two-step system GMM esti-
mator to estimate the models in the present 
paper.41 lnY−1, W*lnY, lnBIOM, lnWIND, 
lnHYDR, lnCOAL, lnOIL, lnK, lnL, lnINST, 
W*lnBIOM and W*lnWIND are treated as endo-
genous in the estimation of Equation. (3) and 
Equation. (4). lnHC is considered as the predeter-
mined variable in the estimation of the two equa-
tions. The first and above lags of the predetermined 
variable and the second and above lags of the 
endogenous variable are used for GMM-type 
instruments.42 Regional dummies and time trend 
are treated as exogenous, and they are instrumen-
ted in a IV style.

The consistency of the system GMM estimator 
depends on whether lagged values of the explana-
tory variables are valid instruments (Ogunniyi et al.  
2020). To address this issue, three specification 

34The system GMM estimator is suggested by Arellano and Bover (1995) and Blundell and Bond (1998).
35Spatial panel literature widely uses maximum likelihood estimator. However, this estimator would produce inconsistent and biased estimates if the potential 

endogeneity of other explanatory variables is present (Zheng et al. 2013).
36In this study, endogeneity arising from the reverse causality between renewable energy sources and economic growth may be a serious problem in our 

model. We are grateful to an anonymous referee for the advice to tackle the problem of reverse causality in our empirical models. One can imagine that, for 
instance, the worldwide economic crisis may decrease dramatically the investment in renewable energy sources (Li et al. 2021). The presence of endogeneity 
in our model could also potentially be explained by the reverse causality from traditional energy sources to economic growth. This reverse causality 
hypothesis touches the energy-growth literature, which provides evidence on the causality running from economic growth to energy use (see Acheampong 
et al. 2021). Another important concern of endogeneity in our model related to the potential feedback effects from economic growth to institutional quality. 
That is because the existing literature suggests that economic growth causes improvement in institutional quality (Law, Lim, and Ismail 2013).

37The difference GMM estimator is proposed by Arellano and Bond (1991). In the difference GMM approach, the strategy is to remove the individual fixed effect 
by proceeding with the first difference of level equation and then use lagged variables as the instruments of endogenous variables in the difference equation 
(Trotta, Hansen, and Sommer 2022; Zheng et al. 2013). The difference GMM estimator suffers from the weak instrument problem which can result in large 
finite-sample bias and poor precision (Ogunniyi et al. 2020; Trotta, Hansen, and Sommer 2022). Weak instrument problem means that lagged levels of the 
dependent variable are weak instruments for first differences (Ogunniyi et al. 2020; Trotta, Hansen, and Sommer 2022).

38This allows the introduction of more instruments and thus can dramatically improve estimation efficiency (Roodman 2009; Trotta, Hansen, and Sommer  
2022).

39The short panel data means large cross-sectional dimension with short time dimension, as in our case (N = 32; N = 11).
40See e.g. Espoir and Sunge (2021) and Zheng et al. (2013), among many others.
41The system GMM method can be divided into one-step and the two-step estimation methods in accordance with different choices of the weight matrix. The 

one-step estimator assumes that the error terms are homoscedastic across groups and over time. The two-step estimator uses the estimated residuals from 
the one-step estimator to construct more efficient heteroskedasticity consistent GMM weighting matrix (Davidson and MacKinnon 2004). In addition, the 
two-step estimation has been proven to be more efficient than the one-step estimation.

42The two techniques suggested by Roodman’s (2009) are further used together to address the problem of ‘too many instruments’. This problem means that 
a high instrument count can over fit endogenous variables and weaken the power of the Hansen test to detect invalidity of the system GMM instruments 
(Roodman 2009). On the one hand, we use only certain lags instead of all available lags for instruments (limiting lags) and combine instruments by adding 
them into smaller sets (collapsing instruments). On the other hand, conforming to Roodman’s (2009) rule of thumb, we keep the number of instruments 
never larger than the number of individual units in the panel. The regressions are run using Stata command xtabond2.
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tests, including Hansen over-identification test, 
Arellano-Bond error autocorrelation test and dif-
ference-in-Hansen test, are necessary.43

III. Empirical results

Spatial autocorrelation test

To explore the existence of spatial autocorrelation 
in real GDP per capita, we adopt the global 
Moran’s I index which has been widely used in 
the literature on spatial studies. The global 
Moran’s I index describes the extent of the overall 
spatial relationship across all spatial units. The 
values of global Moran’s I index range over 
[−1,1].44 A positive value of Moran’s I index indi-
cates spatial clustering across the sample countries, 
with a higher value implying a stronger association 
(i.e. more positively correlated). By contrast, 
a negative value denotes spatial dispersion across 
the sample countries, with a lower value implying 
a stronger association (i.e. more negatively corre-
lated). A zero value indicates a random distribution 
of real GDP per capita across countries.

The values of Moran’s I index and the associated 
P-value for real GDP per capita over the period 
2009–2019 by using the trade-intensity-based spa-
tial weight matrix are presented in Table 4. As 
shown, the Moran’s I values for real GDP per capita 
were positive and statistically significant at the 5% 
and 10% significance levels for the entire time 
period, suggesting that real GDP per capita were 
not randomly distributed but rather exhibited 
a positive spatial interdependence. It implies that 

the countries with high real GDP per capita (resp. 
low) are localized close to other countries with high 
real GDP per capita (resp. low). Hence, the exis-
tence of spatial autocorrelation provides a support 
for necessity of considering spatial effects in the 
econometric estimation.

To further describe the heterogeneity of spatial 
association cross different geographic units within 
the areas under investigation, we construct Moran 
scatter plot (Marbuah and Amuakwa-Mensah 
2017).45 Using the cross-sectional data of 2010 
and 2018, we draw Moran scatter plot to visualize 
the atypical spatial associations in the data of eco-
nomic output (see Figure 1). It reveals that in 2010 
and 2018 most countries were located in the first 
and third quadrants, which implies that real GDP 
per capita displays an obvious positive correlation 
in spatial distribution. More specifically, the plots 
show that in 2010 and 2018, 21 countries (66%) and 
20 countries (63%) were located in the first and 
third quadrants.46 Therefore, the graphical evi-
dence shows the presence of spatial heterogeneity 
and therefore implies the necessity to consider 
spatial effects in our empirical analysis.

Table 4. Global Moran’s I index of GDP per capita using trade- 
intensity-based spatial weight matrix.

Year Moran’s I Year Moran’s I

2009 0.11*** 2015 0.078**
2010 0.106** 2016 0.071**
2011 0.104** 2017 0.064*
2012 0.1** 2018 0.061*
2013 0.097** 2019 0.059*
2014 0.093**

***, ** and * denote a significance of 1%, 5% and 10%, respectively. The null 
hypothesis is no global spatial autocorrelation.

43The Hansen over-identification test examines the overall validity of the instruments by employing the null hypothesis that all instruments as a group are 
exogenous. The acceptance of this hypothesis means that the instruments are not correlated with the error term (i.e. the instruments are valid). The Arellano- 
Bond error autocorrelation test is performed under the null hypothesis of no first- or second-order serial correlation in the first-differenced error term. The 
assumption of no first-order serial correlation should be rejected, whereas the hypothesis of no second-order serial correlation should be accepted. The 
difference-in-Hansen test investigates the validity of instrument subsets by employing the null hypothesis of exogeneity of the set of examined instruments. 
Failure to reject the null hypothesis implies that the instruments are exogenous.  

44The global Moran’s I index can be expressed as: I ¼
n
Pn

i¼1

Pn

j¼1
Wij xi � �xð Þ xj � �xð Þ

Pn

i¼1

Pn

j¼1
Wij

Pn

i¼1
xi � �xð Þ

2 Where n is the number of spatial units (i.e. countries). xi and xj represent real GDP 

per capita of country i and j, respectively. �x is the mean value of real GDP per capita, i.e. �x ¼ 1
n

Pn

i¼1
xi . Wij is an element of the spatial weight matrix.

45The Moran scatter diagram plots the spatial lag of variable (Wz) against the original value (z). The values are distributed into four quadrants which correspond 
to the four types of local spatial association between a region and its neighbours. The first quadrant (upper-right), which depicts a region with a high value is 
surrounded by neighbours with high values, representing a positive spatial autocorrelation (High-High, HH). The second quadrant (upper-left), which 
represents a low-value region is surrounded by high-value regions, indicating a negative spatial autocorrelation (Low-High, LH). The third quadrant (lower- 
left), represents a low-value region is surrounded by low-value regions, meaning a positive spatial autocorrelation (Low-Low, LL). The fourth quadrant (lower- 
right), represents a high-value region is surrounded by low-value regions, denoting a negative spatial autocorrelation (High-Low, HL).

46As an illustration in 2010, Belarus and Argentina were located in the first quadrant (i.e. High-High clustering), meaning that countries with high real GDP per 
capita surrounded by other countries with high real GDP per capita. Kenya and Sri Lanka were found in the third quadrant (i.e. Low-Low clustering), implying 
that countries with low real GDP per capita surrounded by other countries with low real GDP per capita.
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Panel unit root and cointegration tests

We perform the panel unit root tests and cointe-
gration tests before estimating the empirical mod-
els described in the previous section in order to 
avoid spurious regression problem. To check the 
stationarity of the variables, HT (Harris and 
Tzavalis 1999) and CIPS (Pesaran 2007) unit root 
tests are used in this study.47 The CIPS test which 
produces accurate results in the presence of cross- 
sectional dependence is preferred because 
Pesaran’s (2004) cross-section dependence (CD) 
tests show that each series exhibits cross-sectional 
dependence (see Table 5). Results for all the unit 
root tests are reported in Table 6. As shown, all the 
variables become stationary after first differencing. 
Then the integration of all the variables is of order 
1, i.e. I(1).

The unique order of integration of these vari-
ables leads us to further test the existence of coin-
tegration between them. In doing so, we perform 
the panel cointegration tests using the Kao cointe-
gration test (Kao 1999).48 The panel cointegration 
test results are presented in Table 7. We find that 
the null hypothesis of no cointegration is rejected 
at either 1%, 5% or 10% significance levels for all 
five test statistics under the Model A (Biomass & 
waste) and Model B (Wind). Equally, four out of 
the five statistics suggest the rejection of the null 
hypothesis of no cointegrating relationships under 
the Model C (Biomass & waste and Wind). To sum 
up, we could conclude the existence of a long-run 
cointegration relationship among the variables 
used in this paper. The evidence of unit root tests 
and cointegration tests support that the empirical 
analysis discussed in the next subsection is free 
from spurious regression problem.

Spatial dynamic regression results

Table 8 presents the estimated results of the spatial 
dynamic system GMM panel models. The diagnos-

tic statistics reported in the Table 8 show that our 
spatial dynamic system GMM estimates meet all 
specification tests, indicating that our estimates are 
effective and consistent. As expected, the first- 
order autocorrelation (AR(1)) is present and 
the second-order autocorrelation (AR(2)) is absent. 
Hansen tests fail to reject the null hypothesis of 
jointly valid instruments for all estimated models, 
indicating that all the instrumental variables used 
in this study are effective. At the same time, differ-
ence-in-Hansen tests fail to reject the null hypoth-
esis of exogeneity of the set of examined 
instruments, confirming that the instruments are 
reasonable and effective. In addition, in accordance 
with Roodman’s (2009) rule of thumb, the number 
of instruments is not larger than that of countries 
in all of the estimated models.

Turning to the coefficient estimates, the esti-
mated coefficient on the lagged dependent variable 
(lnY−1) is positive and statistically significant at the 
1% level in each model, implying that GDP per 
capita has a path-dependence effect. This evidence 
corroborates the necessity of using the dynamic 
panel model.49 Moreover, the estimated coefficients 
of lnY−1 are inferior to 1 across all the specifica-
tions, indicating that there is conditional beta con-
vergence in GDP per capita across countries when 
spatial effect is accounted for. According to the 
estimation results shown in Table 8, the condi-
tional rates of convergence (#) range from 0.088 
to 0.181.50

The estimated coefficients of the spatially lagged 
dependent variable (W* lnY) are significantly posi-
tive at either 1%, 5% or 10% significance levels 
across all the models (except model (4)). This find-
ing reveals the positive spatial dependence of GDP 
per capita, that is, the GDP in one country is 
positively affected by its neighbouring countries’ 
GDP. This result is consistent with Chica-Olmo, 
Sari-Hassoun, and Moya-Fernández (2020) evi-
dence derived from 26 European countries over 
the period 1991–2015. Our finding further pro-

47The HT is the first generation test that ignores cross-sectional dependence. The CIPS is the second generation test that allows for cross-sectional dependence. 
The null hypothesis for these two tests is that a unit root exists.

48The mean of the series across panels is subtracted before performing the panel cointegration test in order to mitigate the impact of cross-sectional 
dependence (Levin, Lin, and Chu 2002; You and Lv 2018).

49The estimated coefficients of lnY−1 lie between the fixed effects estimate (which is downward biased) and the pooled OLS estimate (which is upward biased), 
indicating that the system GMM estimates are not subjected to significant finite sample bias (Zheng et al. 2013).

50The convergence rate # is obtained using # ¼ � ln τð Þ and τ is the coefficient of lnY−1 (Hao and Peng 2017).
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Figure 1. Moran scatter plots of economic output in 2010 and 2018 using economic distance weight matrix. This figure plots spatially 
lagged GDP per capita against GDP per capita.
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vides evidence for regional interconnectivity 
implying that the growth performance of develop-
ing countries depends on the growth rate of neigh-
bouring regions.

The estimated parameters of electricity produc-
tion from biomass & waste (lnBIOM) are positively 
and highly significant across all the models.51 The 
estimated coefficients on wind power (lnWIND) 
are uniformly positive and consistent across all 
the models, albeit it is not statistically significant 
in two specifications. These results support the 
presence of the energy-led growth hypothesis for 

renewable energy sources.52 Our findings are in 
line with Chen, Pinar, and Stengos (2020), Ito 
(2017) and Le, Chang, and Park (2020) who con-
clude that renewable energy is a driver of economic 
growth in developing countries. Our results further 
illustrate that individual renewable sources have 
positive impact on economic growth to different 
extents, and therefore it is necessary to disentangle 
the aggregate measures into disaggregate 
measures.53 This is consistent with the evidence 
reported in Armeanu, Vintila, and Gherghina 
(2017) and Ohler and Fetters (2014).

Table 5. Cross-sectional dependence test.
Variables CD-test Variables CD-test

lnY 41.22*** lnHYDR 8.63***
lnK 14.31*** lnCOAL 10.13***
lnL 2.79*** lnOIL 20.34***
lnBIOM 21.20*** lnINST 3.14***
lnWIND 45.96*** lnHC 55.97***

The CD-test performs the null hypothesis of cross-sectional indepen-
dence. *** denotes significant at the 1% level.

Table 6. Panel unit root tests.
Variable Levels First difference

HT CIPS HT CIPS
lnY 0.9941 −1.297 0.5882*** −1.726**
lnK 0.9934 −1.401 0.3583*** −2.257***
lnL 0.9978 −0.615 0.2574*** −2.111***
lnBIOM 0.9972 −1.242 −0.0520*** −2.813***
lnWIND 0.9484** −0.998 0.1517*** −2.591***
lnHYDR 0.9946 −1.755*** −0.2393*** −2.959***
lnCOAL 0.9883 −0.626 −0.2907*** −3.084***
lnOIL 0.9978 −1.459* −0.1720*** −3.040***
lnINST 0.9865 −1.308 0.1034*** −2.875***
lnHC 0.9919 −0.619 0.9669* −2.794***

***, ** and * denote a significance of 1%, 5% and 10%, respectively.

Table 7. Kao panel cointegration tests.
Kao test statistic Model A (Biomass & waste) Model B (Wind) Model C (Biomass & waste and Wind)

Modified Dicky-Fuller t 1.2682* 2.4833*** 1.2958*
Dicky-Fuller t 1.7962** 3.2362*** 1.8285**
Augmented Dicky-Fuller t 3.2331*** 4.5502*** 3.1522***
Unadjusted modified Dicky-Fuller t 1.2365* 1.6531** 1.2172
Unadjusted Dicky-Fuller t 1.7668** 2.3181*** 1.7556**

All test statistics are under null hypothesis of no cointegration. ***, ** and * denote a significance of 1%, 5% and 10%, respectively. In Model A, the series 
tested are Y, K, L, BIOM, HYDR, COAL, OIL, INST and HC. In Model B, the series tested are Y, K, L, WIND, HYDR, COAL, OIL, INST and HC. In Model C, the series 
tested are Y, K, L, BIOM, WIND, HYDR, COAL, OIL, INST and HC..

51The countries which have biomass surpluses tend to use it rather locally in order to replace fossil fuels. In this regard, the positive and significant estimated 
parameters (lnBIOM) confirm that the local use of biomass can positively affect the economic growth of these countries with large local markets and suitable 
processing infrastructures.

52We further use the novel panel Granger non-causality test, developed by Juodis, Karavias, and Sarafidis (2021), to provide supportive evidence of one-way 
causality running from renewable energy sources to economic growth. This test accounts for cross-sectional dependence in the data series, efficiently 
estimates the panel Granger non-causality in heterogeneous or homogeneous panels and is robust for panel data with a moderate time dimension. So this 
test is suitable for our dataset. Under the null hypothesis, there is no causality in any cross-section units of the panel. Under the alternative hypothesis, there is 
causality in at least one cross-section unit. This test is applied on the first difference of the series under examination, because this test requires that all the 
variables must be stationary. The estimated results of the test with two lags are presented in Table A1. As shown, it suggests to reject the null hypothesis at 
either 1%, 5% or 10% significance levels. Therefore, the Granger causal relationships from individual renewable sources to economic growth is evidenced for 
the whole region under examination.

53The coefficients of lnBIOM range from 0.0133 to 0.0246, and the coefficients of lnWIND range from 0.0012 to 0.0034 (see Table 8).
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The estimated coefficient of the spatial lag for 
lnBIOM is significantly negative in model (2), and 
the coefficient of the spatial lag for lnWIND is sig-
nificantly negative in both model (4) and model (6). 
These results suggest that the development of bio-
mass & waste or wind power in neighbouring coun-
tries reduces the economic growth in home country. 
These results, to our knowledge for the first time, 
provide evidence of spatial spillover effects from 
renewable energy on economic growth for develop-
ing countries. These findings further justify that the 
heterogeneous spatial impacts of some particular 
renewable energy sources on economic growth 
may be masked by the total measure.

A possible explanation for negative spatial effects 
lies with the interactions between faster 

development of biomass & waste or wind power 
in nearby countries and the investment competi-
tion effect between the country and its neighbour-
hood. That is to say, faster development of biomass 
& waste or wind power in nearby countries bene-
fitting from better renewable policy supports may 
trigger a re-location of foreign firms from a specific 
country to these countries.

For biomass, another possible explanation for 
this result is that a country in the development 
phase of the biomass sector may lead neighbouring 
countries to export raw or non-processed products, 
and large-scale production in the neighbouring 
countries could have a negative impact on their 
own potential growth.54 Concerning the wind sec-
tor, another possible explanation for the negative 

Table 8. Dynamic SYS-GMM results using economic distance weight matrix.
Variable (1) (2) (3) (4) (5) (6)

lnY−1 0.8683*** 
(0.0186)

0.8344*** 
(0.0385)

0.8909*** 
(0.0253)

0.9158*** 
(0.0457)

0.8855*** 
(0.0313)

0.8431*** 
(0.0577)

lnBIOM 0.0133*** 
(0.0046)

0.0146** 
(0.0067)

0.0143*** 
(0.0056)

0.0246** 
(0.0115)

lnWIND 0.0021** 
(0.001)

0.0034*** 
(0.0013)

0.0012 
(0.0015)

0.0023 
(0.002)

lnHYDR −0.0193** 
(0.0095)

−0.0196** 
(0.0096)

−0.0088* 
(0.0053)

−0.0085* 
(0.0051)

−0.015** 
(0.0068)

−0.0239** 
(0.0118)

lnCOAL 0.0052 
(0.0054)

0.0051 
(0.0062)

0.0027 
(0.0046)

0.0034 
(0.0052)

0.0012 
(0.0055)

−0.0038 
(0.0056)

lnOIL 0.011 
(0.0138)

0.023* 
(0.0138)

0.0135 
(0.0113)

0.017* 
(0.0094)

0.011 
(0.0136)

0.0334 
(0.0224)

lnK 0.0289 
(0.0286)

0.0131 
(0.0294)

0.0395* 
(0.022)

0.0182 
(0.0357)

0.0284 
(0.0344)

−0.0391 
(0.0345)

lnL 0.1951*** 
(0.0696)

0.1885** 
(0.0819)

0.1534*** 
(0.0428)

0.0975* 
(0.0562)

0.1654*** 
(0.062)

0.3329*** 
(0.122)

lnINST 0.0614*** 
(0.0201)

0.0608*** 
(0.0247)

0.0194 
(0.0156)

0.0335** 
(0.0174)

0.0325* 
(0.0183)

0.0519* 
(0.0317)

lnHC 0.0254 
(0.0436)

0.0441 
(0.0405)

0.0524** 
(0.025)

0.057* 
(0.0322)

0.0367 
(0.0356)

0.1331** 
(0.0677)

W*lnY 0.129** 
(0.0551)

0.1297*** 
(0.052)

0.069* 
(0.0385)

0.0161 
(0.0489)

0.081* 
(0.0482)

0.1289* 
(0.0772)

W*lnBIOM −0.0286*** 
(0.0089)

−0.0369 
(0.0261)

W*lnWIND −0.0074** 
(0.0035)

−0.0251*** 
(0.0081)

Constant −0.3575 
(0.5208)

0.0931 
(0.4715)

−0.1017 
(0.3176)

0.289 
(0.556)

−0.0173 
(0.5552)

0.703 
(0.6011)

Time effect Yes Yes Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes Yes Yes
Convergence rate (#) 0.1412 0.181 0.1155 0.088 0.1216 0.1707
AR(1) 
AR(2)

−2.42** 
−0.42

−2.28** 
−0.61

−2.48*** 
−0.22

−2.38** 
−0.15

−2.46*** 
−0.48

−1.98** 
−0.77

Hansen test 17.64 16.68 21.46 20.21 17.99 8.6
Nb of instruments 32 32 32 32 31 32
Nb of obs. 320 320 320 320 320 320

AR (1) and AR (2) denote Arellano-Bond first and second-order autocorrelation tests. Hansen test is the Hansen test of over identification restrictions. The 
convergence rate # is obtained using # ¼ � ln τð Þ and τ is the coefficient of lnY−1. Standard errors are shown in parentheses. ***,**, and * denote 
a significance of 1%, 5% and 10%, respectively.

54Among the selected countries, the Russian Federation is one of the worldwide leaders in the production and export of industrial roundwood, with a large 
forest stock. The attractiveness of the neighbouring country confines the Russian wood industry to a primary specialization. It exports most of its industrial 
roundwood to China whose growing demand exceeds local production. This international position and the Russian fossil fuels-oriented energy policy do not 
encourage investment in local processing infrastructure allowing the deployment of the local use of biomass for energy purposes and a move upmarket in 
the associated value chain. The resulting increase in demand and employment of skilled labour related to this industry would drive human capital away from 
innovation activities within the biomass sector, reducing growth over the long run (Grossman and Helpman 1991; Young 1991).
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spatial effects may be due to the displacement of 
environmentally harmful technologies. Concretely, 
the maturity of wind technology in surrounding 
countries may induce local country to increase its 
wind imports from the surrounding countries. 
A higher share of wind imports render wind 
power more competitive to alternative existing car-
bon-intensive fossil technologies, and thereby con-
tributing to displace the latter in importing 
countries (Garsous and Worack 2022). The displa-
cement of environmentally harmful technologies 
may subsequently result in economic losses (Xia 
and Song 2017).

Turning to the coefficients of traditional energy 
sources, the estimates, on the whole, show 
a negative and significant impact of hydroelectri-
city (lnHYDR) on economic growth, whereas 
a positive and insignificant impact of coal 
(lnCOAL) and oil (lnOIL)

on economic growth. Our result about the nega-
tive coefficient of hydroelectricity is inconsistent 
with the findings of Solarin and Ozturk (2015) 
and Ummalla and Samal (2018), showing that 
hydropower is a driving force to enhance the eco-
nomic growth.55 Our result is not surprising 
because hydroelectricity usage empirically proves 
to be harmful to the environment and by extension 
to the economic growth (Dash, Dash, and Sethi  
2022). Our new evidence that is different from the 
finding of previous studies may be due to the use of 
different estimation techniques, different countries 
and sample period. The observed positive effect of 
oil (lnOIL) on economic growth is consistent with 
the evidence reported in Long et al. (2015) and 
Marques and Fuinhas (2012), suggesting that oil 
is a stimulus to economic growth.

The insignificant (with mixed signs) coefficient 
for coal (lnCOAL) is largely in line with the existing 
studies whose findings are at best inconclusive. 
Some studies lent their view in support of the coal 

as a driver of economic growth56 while others hold 
the opposite view.57 In fact, the inconclusive find-
ings may be explained by two opposing forces and 
the net effect of coal on economic growth depends 
on the relative strength of each opposing force. On 
the one hand, coal is a relatively cheap energy 
source and thus remains the engine of economic 
growth (Marques and Fuinhas 2012). On the other 
hand, coal is the most carbon-intensive energy 
source which could damage the environment and 
therefore the economic expansion (Marques and 
Fuinhas 2012; Udi, Bekun, and Adedoyin 2020).58 

These results attest to the importance of consider-
ing the dissimilar and even contrary effects of dis-
aggregated traditional energy sources on economic 
growth.

Conforming to the findings of many studies, 
a positive and significant effect of labour on eco-
nomic growth is observed.59 It implies that labour 
is a major driver behind the economic growth of 
developing countries. However, this is not the case 
for capital. As shown in Table 8, the coefficients of 
lnK are positive in models (1) - (5). These findings 
support the earlier studies60 which reported that 
capital enhances economic growth. In contrast, the 
coefficient of lnK is negative in model (6). This 
result is consistent with the recent findings of 
Topcu, Altinoz, and Aslan (2020), suggesting that 
capital has a negative effect on economic growth.61 

Thus, the impact of capital on economic growth 
deserves more attention.

Next we turn to the coefficients of control vari-
ables. We observe that the estimated coefficients of 
institutional quality (lnINST) are positively and 
significantly at either 1%, 5% or 10% significance 
levels across all the models (except model (3)). This 
outcome is in accordance with a large body of 
literature62 and supports the well documented 
insight that institutional quality is a critical driver 
of economic growth. We also find that human 

55The studies on the nexus between hydroelectricity and economic growth are still scarce in the energy-growth literature (Dash, Dash, and Sethi 2022; Ummalla 
and Samal 2018).

56See Chen et al. (2022) and Long et al. (2015).
57See Marques and Fuinhas (2012) and Udi, Bekun, and Adedoyin (2020).
58The economic benefit of coal use may be outweighed by the economic costs of mitigating carbon emissions (Apergis and Payne 2010).
59See Koçak and Şarkgüneşi (2017) and Le, Boubaker, and Nguyen (2021).
60See Apergis and Payne (2012) and Koçak and Şarkgüneşi (2017).
61The negative impact of capital on economic growth may be due to the inadequacy of capital accumulation that is the most important limit to sustainable 

economic growth (Nweke, Odo, and Anoke 2017; Topcu, Altinoz, and Aslan 2020). Because the impact of capital accumulation on economic growth depends 
on the intensity of its determinants (such as savings and foreign direct investments), and the changes in these determinants could affect positively or 
negatively capital accumulation which in turn affect the economy as a whole (see Nweke, Odo, and Anoke (2017) for a detailed discussion).

62See e.g. Maruta, Banerjee, and Cavoli (2020) and Nawaz, Iqbal, and Khan (2014), among many others.
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capital (lnHC) exerts a statistically significant 
impact on economic growth in models (3), (4) 
and (6). In addition, the positive effects of human 
capital are stable in all the models. Our results 
confirm the previous evidence63, suggesting that 
human capital fosters economic growth.

Finally, to provide further validation of the base-
line empirical estimates, we carry out an additional 
sensitivity analyses via alternative weight matrix 
specifications. Estimates of these robustness 
checks, reported in Appendix (see Table A2), 
show that the main results are quite similar to the 
baseline and do not depend on the choice of weight 
matrix.

IV. Conclusion and policy recommendations

Given the increasing investment in renewable 
energy in developing countries, this paper attempts 
to test the energy-led growth hypothesis for renew-
able energy sources for these countries. To this end, 
the present paper uses a balanced panel data of 32 
lower/upper middle income countries over the per-
iod 2009 to 2019 and applies spatial dynamic tech-
niques to investigate the impacts of disaggregate 
renewable energy sources on economic growth 
within a multivariate framework including the dis-
aggregated non-renewable energy, capital, labour, 
institutional quality and human capital.

This paper provides statistically significant evi-
dence for the positive impacts of electricity produc-
tion from biomass & waste and wind power on 
economic growth of developing countries. 
Overall, these results validate the energy-led 
growth hypothesis for renewable energy sources. 
This study shows the first piece of evidence of 
spatial spillover effects from disaggregated renew-
able energy on economic growth for developing 
countries. Our results provide support on the exis-
tence of spatial dependence of economic growth 

across countries. Our analysis reveals the signifi-
cantly negative impacts of hydroelectricity on eco-
nomic growth. Our analysis also confirms the 
importance of labour, institutional quality and 
human capital in driving economic growth.

Our evidence of spatial spillover effects from 
renewable energy on economic growth points to 
the need to consider a spatial dependence in terms 
of renewable energy transition which has impor-
tant policy implications for economic outcome. 
The spatial dependence of transition towards 
renewable energy is characterized by uneven dis-
tribution of renewable energy supply and 
demand64, energy technological disparities in 
space65, as well as competitive dynamics in tech-
nology development66 (Noseleit 2018). These char-
acteristics provide a rationale for government to 
pay special attention to the potential difficulties 
caused by country borders as spatial barriers that 
can hamper energy transition (Noseleit 2018). The 
spillover mechanism of energy transition further 
plays a crucial role in sustainable growth processes.

Given the extent to which the economic growth 
of developing countries depends on various renew-
able energy resources, policymakers should over-
come current barriers to renewable energy 
deployment and pursue active policies to promote 
renewable energy for sustainable growth. First of 
all, government should play a fundamental role in 
how to finance the energy transition on both the 
supply side (R&D and infrastructures) and the 
demand side (education and communication to 
change individual and social preferences).67 

Second, in developing countries, the renewable 
energy sector refers to infant industries that do 
require particular forms of government assistance 
based upon specific instruments of industrial or 
sector-oriented policy68 Third, energy policies 
directed at the diffusion of renewable energies 
should strengthen the entire value chain from the 

63See Fang and Chen (2017) and Siddiqui and Rehman (2017).
64The imperfectly correlated renewable energy supply and demand across countries promotes the development of cross-border energy markets so as to share 

‘back-up’ production capacities and meet excess demand (Abrell and Rausch 2016).
65The uneven development of new energy technology in space is responsible for the adoption and diffusion speed of renewable energy innovation across 

countries. The countries that are spatially proximate to the location of innovation may experience an ease technology diffusion, whereas, the countries that 
are far away from the innovation may experience substantial delay in adopting new technological solutions.

66Different domestic and foreign technologies compete in space may result in more complex spatial patterns of energy transition towards renewable sources.
67Initial investment costs are much more significant in emerging renewable energies, such as, wind (biomass) power, than in the conventional alternative. 

These financing costs might offset the ‘natural’ comparative advantage that developing countries may have.
68Such as, tax credits or exemptions, employment credits, privileged access to scarce factors of production, and provision of credit at below market rates..
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manufacturer to the end user.69 Finally, in the 
current globalized context where externalities, free- 
riding and public budget constraints play an 
important role, traditional policy tools such as 
taxes or subsides should be complemented with 
other solutions based on new financial engineering 
and leverage jointly with the restoration of missing 
markets (pollution permits).

Meanwhile, the policymakers should attach 
equal importance to energy security alongside 
renewable energy deployment.70 The increasing 
pressure to decarbonize energy systems has trig-
gered a strong interest in favour of the integration 
of renewable energy sources in electricity mix 
(Hache and Palle 2019; Radulescu and Sulger  
2022). However, the integration of renewable 
energy sources in electricity mix poses energy 
security challenges for several reasons (Radulescu 
and Sulger 2022). First, large-scale integration of 
renewable energy sources may introduce additional 
uncertainty to an existing power system due to the 
intermittent nature of these sources (Das et al.  
2018; Hache and Palle 2019).71 In this context, 
a flexible power system is critical to ensure large- 
scale penetration of intermittent renewable energy 
sources (Das et al. 2018).72 It is widely perceived 
that flexible backup unit73 is an essential part of the 
solution to cope with the intermittency. 
Nevertheless, the subsidized renewable energy 
sources distort investment incentives for conven-
tional backup capacity and thus the adverse invest-
ment effects of renewable energy sources may pose 
a threat to adequate electricity supply in the long- 
run (Liebensteiner and Wrienz 2020). Second, pur-
suing renewable energy transition may curtail 
energy sovereignty.74 The pressure for fighting 
against climate change pushes the countries, in 
which renewable resource endowments are limited 
and energy system infrastructures are less 

developed, to integrate their power systems with 
neighbouring countries (Thaler and Hofmann  
2022). The cross-border power systems allow 
improving reliability and availability of electricity. 
Despite this, the integration into cross-border 
power systems require common rules and lead to 
reduced autonomy in energy policymaking (Thaler 
and Hofmann 2022). Third, renewable energy tran-
sition policies may induce new energy security 
challenges. The transition towards renewable 
energy may result in geopolitical consequences, 
which are less conflictual than those of fossil fuels, 
by transforming patterns of cooperation and con-
flict between countries (Hache 2018; Scholten et al.  
2020). The expansion of renewable energy technol-
ogies could lead to new interdependences, espe-
cially, dependences to critical minerals and metals 
(Hache 2018; Scholten et al. 2020). The depen-
dences to critical minerals and metals may exacer-
bate competition for access to these materials 
among countries that compete for industry in 
renewable generation technologies (Scholten et al.  
2020).

The current limitations regarding available data 
prevent the extension of analysis to additional years 
and to more countries, and prevent the investiga-
tion of other renewable energy sources across 
developing countries, and therefore it is left for 
further research.
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Appendix

Table A2. Dynamic SYS-GMM results using queen contiguity matrix – robustness checks.
Variable (1) (2) (3) (4) (5) (6)

lnY−1 0.9055*** 
(0.036)

0.8832*** 
(0.0297)

0.8901*** 
(0.043)

0.892*** 
(0.0399)

0.8664*** 
(0.0199)

0.8764*** 
(0.0331)

lnBIOM 0.011** 
(0.0055)

0.013*** 
(0.0052)

0.0148*** 
(0.0055)

0.0118** 
(0.0053)

lnWIND 0.0028** 
(0.0012)

0.0044*** 
(0.0017)

−0.0038 
(0.0032)

−0.0024 
(0.0017)

lnHYDR −0.0037 
(0.0064)

−0.0219*** 
(0.0086)

−0.0062 
(0.0062)

−0.0101* 
(0.0057)

−0.0154*** 
(0.0052)

−0.0051 
(0.0085)

lnCOAL −0.0073 
(0.0054)

−0.0044 
(0.0044)

0.0003 
(0.0041)

−0.0146*** 
(0.0059)

−0.0068 
(0.0051)

−0.0158 
(0.0108)

lnOIL 0.0117 
(0.014)

0.0343*** 
(0.0125)

0.0131 
(0.0152)

0.0326** 
(0.0149)

0.0308*** 
(0.0107)

0.031*** 
(0.0125)

lnK 0.0454 
(0.0325)

0.0187 
(0.0262)

0.0444* 
(0.0266)

0.0155 
(0.0451)

0.0235 
(0.0354)

0.0252 
(0.0294)

lnL 0.1526** 
(0.0764)

0.2004*** 
(0.0489)

0.0962** 
(0.0473)

0.1325** 
(0.0635)

0.1624*** 
(0.055)

0.1834** 
(0.0775)

lnINST 0.0433* 
(0.0262)

0.0816*** 
(0.0234)

0.0019 
(0.0231)

0.0369 
(0.0304)

0.0925*** 
(0.0272)

0.0382 
(0.0293)

lnHC 0.072* 
(0.0415)

0.1512*** 
(0.0607)

0.0931*** 
(0.0366)

0.0921 
(0.0653)

0.0813* 
(0.0485)

0.0867 
(0.0654)

W*lnY 0.0026** 
(0.0012)

0.0025** 
(0.0013)

0.0007 
(0.0009)

0.0011 
(0.0011)

0.0016 
(0.0012)

0.0019* 
(0.0012)

W*lnBIOM −0.0031** 
(0.0014)

0.0009 
(0.0018)

W*lnWIND −0.0031*** 
(0.0007)

−0.0022** 
(0.001)

Constant 0.05 
(0.3032)

0.3607 
(0.3063)

0.3862 
(0.3185)

0.4743 
(0.3889)

0.4938 
(0.4967)

0.5184* 
(0.2988)

Time effect Yes Yes Yes Yes Yes Yes
Individual effect Yes Yes Yes Yes Yes Yes
Convergence rate (#) 0.0993 0.1242 0.1164 0.1143 0.1434 0.1319
AR(1) 

AR(2)
−2.38** 

−0.42
−2.30** 

−0.73
−2.46*** 

−0.24
−2.23** 

−0.25
−2.33** 

−0.57
−2.41** 

−0.57
Hansen test 13.85 17.66 20.77 12.35 16.37 9.86
Nb of 

instruments
32 32 32 32 32 32

Nb of obs. 320 320 320 320 320 320

AR (1) and AR (2) denote Arellano-Bond first and second-order autocorrelation tests. Hansen test is the Hansen test of over identification restrictions. The 
convergence rate # is obtained using # ¼ � ln τð Þ and τ is the coefficient of lnY−1. Standard errors are shown in parentheses. ***,**, and * denote 
a significance of 1%, 5% and 10%, respectively.

Table A1. Juodis, Karavias and Sarafidis (2021) panel causality test.
Null hypotheses Statistics

HPJ Wald test P-value
BIOM does not Granger cause Y 6.934** 0.0312
WIND does not Granger cause Y 5.794* 0.0552
BIOM and WIND do not Granger cause Y 37.84*** 0.0000

***,**, and * indicate rejection of the null hypothesis at 1%, 5% and 10%. H0: no causality in any cross-section units. H1: 
causality exists in at least one cross-section unit.
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