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Intensive care units (ICU) physicians are experiencing a 
rapidly expanding collection of vast amounts of data from 
routine practice, patients’ monitoring as well as from 
diagnostic or prognostic tests. However, although these 
data could influence their clinical decisions and man-
agement, the validity and relevance of data processing 
methods, in particular in case of complex data sets (i.e. 
so-called big data, see Table  1 for related terminology) 
remain to be defined. A growing body of research has 
recently suggested that emerging artificial intelligence 
(AI)-derived methods could help physicians to access, 
organize and use important amounts of data more easily. 
Nowadays, such methods have already found applications 
in various fields, including technology, biology, computer 
science or sociology [1]. However, are these approaches 
more than merely trendy buzzwords? Are they reliable 
enough to match the exponential growth of medical com-
plexity in the critical care setting? And, last but not least, 
can the holistic use of massive data sources available 
eventually provide clinically relevant information?

The reality is that the exponential combinations of 
patients, conditions and treatments cannot be exhaus-
tively explored by processes that often—intentionally 
or inadvertently—exclude interdependent input/output 
parameters because they do not fit into a priori hypoth-
eses or predefined models (Additional file 1: Figure S1). 
In such a context, data-driven approaches hold promise 
of accurately dealing with big data methodological issues, 

and doing so might have a significant impact on the 
improvement in diagnosis, monitoring and prognostica-
tion of ICU processes.

ICU database: closing the data loop
As an evolution to this approach, a dynamic clinical “data 
mining” (Table 1) has been recently proposed, based on 
“data-driven” methods (Additional file 1: Figure S1). The 
main idea is the use of feedback loops to enable real-time 
analysis of patient databases, allow the optimization of 
patient’s care and lead to more efficient targeting of tests, 
treatments and vigilance for adverse effects (e.g. “Mul-
tiparameter Intelligent Monitoring in Intensive Care” 
(MIMIC) [2]. Such closed-loop databases provide phy-
sicians with a unique opportunity to accumulate useful 
clinical evidence to: (1) identify patient subpopulations 
with important variations in treatment efficacy or unex-
pected delayed adverse effects, (2) reveal interactions 
between simultaneous treatments and physiological con-
ditions, (3) create and cross-validate (Table 1) predictive 
models across research teams and institutions to better 
determine which findings are generalizable and (4) pave 
the way for the development and validation of innovative 
and more personalized treatments.

Establishing knowledge
Big data methods seem to have straightforward applica-
tions for personalized medicine [3] and might pave the 
way for promising studies focused on the analysis of the 
intrinsic complexity underpinning human physiology.
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Omics: the rise of the narciss‑ome
Omics data represent a massive source of multimodal 
data. The European Bioinformatics Institute (EBI), one 
of the world’s largest biological data repositories, is cur-
rently storing: ~ 5 petabytes (Additional file  2: Table S1) 
nucleotide sequence data, more than 30,000 genomes 
and ~ 2 million gene expression assays [3]. Furthermore, 
this infrastructure has been accessed 562 million times 
each month by ~ 9 million distinct hosts in 2015. These 
impressive figures highlight the fact that data-driven 
analysis methods are already a constituent part of world-
wide collaborative research projects, built on large big 
data sharing (Fig. 1a).

Brain, consciousness and complexity
To illustrate this point and demonstrate how data-driven 
approaches could be successfully used in this setting, 
we can describe a recent study focused on the assess-
ment of brain structural impact of anoxic/hypoxic insult 
related to cardiac arrest (CA), and the potential use of 
brain MRI grey matter morphometry to predict patients’ 
one-year neurological outcome. The authors [4] stud-
ied a large and multicenter cohort of anoxic comatose 
patients, which were scanned during the acute phase fol-
lowing CA in standardized conditions. Crucially, to accu-
rately evaluate whole-brain grey matter morphometry in 
this setting, fine-grained quantification techniques were 
applied. Eventually, a data-driven approach was used and 

Table 1 Data-driven analysis and related terminology

Big data Data sets with size/complexity beyond the capacity of commonly used methodological approaches to capture, manage and 
process data. Big data might be defined by their high volume, large variety and the important velocity that is required to process 
(3v definition)

Closed‑loop system System in which some or all its outputs are used as inputs. In health care, the use of such feedback loop enables real‑time analysis 
of patient databases and could permit to optimize clinical care leading to more efficient targeting of tests and treatments and 
vigilance for adverse effects (i.e. dynamic clinical data mining)

Cross‑validation Statistical technique for assessing how the results of an analysis will generalize to an independent data set. For example, doing so 
it could permit to estimate how accurately a predictive model will perform in practice

Crowdsourcing The practice of obtaining needed solution by soliciting contribution from a large group of people and specially from online com‑
munities

Data mining The process of collecting, searching through and analysing a large amount of data in a database, as to discover patterns of rela‑
tionships. It is worth noting that this approach does not look for causality and simply aim to detect significant data configura‑
tions

Machine learning Derived methods from artificial intelligence that provides computers with the ability to learn without being explicitly pro‑
grammed. The process of machine learning uses the data to detect patterns and adjust programme actions accordingly

Fig. 1 Data‑driven methods applications. A. Potential ICU dashboard. It will integrate multimodal sources of big data, leveraging on continuous 
monitoring information, personal omics data sets, public health‑related databases, medical notes and prescribed treatments. Probably, future ICU 
physicians will have to confront their medical assessment to integrated omics‑assisted clinical decision systems, to ultimately provide more efficient, 
individual‑tailored and real‑time patient care. B. Neuroprognostication for cardiac arrest survivors. Use of early brain MRI grey matter morphometric 
data‑driven analysis, to assess one‑year neurological outcome after cardiac arrest



Page 3 of 4Textoris et al. Ann. Intensive Care  (2018) 8:58 

permitted to obtain a predictive classifier that showed 
a significant discriminative power [4] and enabled the 
identification of brain grey structures whose degree of 
atrophy was significantly related to one-year neurological 
outcome (Fig. 1b).

Promises, pitfalls and challenges
Complex statistical analyses designed to deal with large 
data sets might appear as magic bullets rendering cum-
bersome randomized trials dispensable (Additional file 3: 
Table S2). In fact, we should certainly keep in mind that 
these statistical optimization techniques are not short-
cuts to broader medical reasoning and should not deter 
clinicians from carefully scrutinizing data so that to avoid 
inappropriate and naive use of these elegant analytical 
methods. For example, population selection and adjust-
ment processes may dramatically influence the outcome 
of studies, giving rise to diametrically opposite conclu-
sions [5].

Furthermore, few additional and unavoidable chal-
lenges, which are specifically related to the use of data-
driven methods should be addressed: (1) computational 
issues should be adequately addressed probably by means 
of cloud storage and cloud computing facilities [6], (2) 
improving quality and ability to structure data, to ensure 
interoperability between various sources of data [7], (3) 
cultural and ethical issues should also be considered and 
constitute a still moot issue in the field, raising questions 
on data ownership, patient anonymity, agreement to par-
ticipate and accountability [8], and highlight the need for 
further debate, standardization and update of the cur-
rent legal or regulatory frameworks [9] and (4) finally, it 
is worth noting that the need for specific analytical skills 
(inference, prediction and computational abilities) jus-
tifies new collaborative interactions between research 
teams as well as specific training for both data scientist 
and future physicians [10].

Conclusion
Considering the complexity of ICU setting, we have illus-
trated how data-driven approaches, through closed-loop 
systems integrating multimodal data, hold the promise 
to provide individually tailored and real-time patient 
care based on the large amount of information currently 
at our disposal. Regarding translational research, data-
driven and hypothesis-driven approaches appear not to 
be mutually exclusive, but largely complementary and 
reciprocally challenging. Understanding the opportu-
nities and pitfalls of implementing big data in the ICU 
setting and considering the subsequent technical, ethi-
cal and societal changes are key issues for the upcoming 
years, paving the way for critical diagnostic and thera-
peutic innovations.
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Additional file 1: Figure S1. Analytical methods for biomedical research. 
Compared to rational hypothesis‑driven research methods (upper panel), 
data‑driven analysis (lower panel) does not imply reductions neither of 
the number of hypothesis that could be studied (i.e. including dynami‑
cal interactions), nor of the obtained data that is used to extract relevant 
information. Additionally, hypothesis‑driven methods are built on 
optimised models derived from artificial intelligence domains, which can 
learn and evolve without explicit programming, and validate the created 
model using data from multiple and independent data sets (i.e. machine 
learning, supplementary‑table‑1 for related terminology).

Additional file 2: Table S1 Conventional terms used to describe data 
size. Scale is based on powers of 1000.

Additional file 3: Table S2 Opportunities and difficulties related to data‑
driven analysis.
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