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Predictive Modeling of Corticosteroids Sensitivity in Sepsis
Using a Supervised Learning Approach
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France
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Abstract Dealing with Sepsis poses a critical challenge in healthcare and necessitates rapid and
well-adapted treatment responses. Corticosteroids have been used as a treatment but individual-level
effects vary widely. This study aims at improving treatment efficacy by leveraging machine learning
techniques to predict patients’ sensitivity to corticosteroids. We use two comprehensive datasets of sep-
sis patients and follow the methodology proposed by Hellali et al. [2024] to evaluate four distinct model
configurations. These configurations employ Logistic Regression and Random Forest algorithms, both
with and without class balancing using the Synthetic Minority Over-sampling Technique for Nominal
and Continuous (SMOTE-NC) data augmentation to address mixed data types. Our findings consis-
tently demonstrate that Random Forest models, particularly when paired with appropriate class bal-
ancing techniques, outperform other model configurations in predicting corticosteroid sensitivity using
both datasets individually and combined. Notably, incorporating SMOTE-NC significantly enhances
model performance, underscoring the importance of appropriately addressing imbalanced datasets in
predictive modeling.

Keywords: sepsis, corticosteroids, machine learning, Random Forest, Logistic Regression, SMOTE-
NC, class imbalance

1 Introduction

Sepsis has become a global issue (Fleischmann et al. [2016]) and is now one of the leading causes of
morbidity and mortality in hospitalized patients. That is in part the result of recent improvements in
medical care and access to hospitals where vulnerable patients can be exposed to a variety of pathogens,
and are treated for disorders for which no treatments were available until recently, causing considerable
mortality, costs and healthcare utilization (O’Brien et al. [2007], Rudd et al. [2020]).

The definition of sepsis has evolved through time, and it is now generally defined as a life-threatening
organ dysfunction caused by a deregulated host response to an infection (van der Poll et al. [2021]).
The signs and symptoms of sepsis are largely influenced by the virulence of the pathogen, the portal of
entry, the susceptibility and response of the host, and the temporal evolution of the condition. Despite
recent progress in clinical practices and the pharmaceutical industry, the incidence and mortality rates
of sepsis have failed to decrease substantially over the last few decades (Rudd et al. [2020]). Early
recognition and adapted intervention are essential to optimize patient outcomes, which is why develop-
ing tools to quickly assess what type of treatment is best adapted to each patient has become crucial.



Generally speaking, the Surviving Sepsis international consensus guidelines recommend starting an-
tibiotic treatment within one hour from sepsis onset (Weiss et al. [2020]). However sepsis treatment
can be difficult due to disease complexity in clinical context (Weiss et al. [2020]) and heterogeneity of
the septic population (van der Poll et al. [2021]).

The present study aims at building and evaluating predictive models for patients’ sensitivity to
corticosteroids, a class of immuno-regulators that can be used to treat sepsis in cases where antibiotics
and blood products have proved inefficient (Keh and Sprung [2004], Annane et al. [2009], Rochwerg
et al. [2018]). The RECORDS project aims to investigate the effectiveness of corticosteroids in treating
sepsis, as well as determine what biomarkers are involved in a patient’s response to treatment. How-
ever, individual responses to corticosteroids are highly variable, and the precise factors and biomarkers
of responsiveness have not been properly identified yet (Long and Koyfman [2017]).

Many studies have already been conducted using machine learning techniques to predict septic
patient outcomes (Pirracchio et al. [2020], Fohner et al. [2019], Komorowski et al. [2022]), provide
early diagnosis, or predict sensitivity to corticosteroids, yet the results are often inconclusive due to
the heterogeneity of the effect of corticosteroids. Our modeling approach is to build a predictive model
to detect corticosteroids sensitivity using the APROCCHSS and RECORDS datasets as in Hellali
et al. [2024]. Both datasets contain information gathered from the Assistance Publique — Hopitaux de
Paris (APHP) from the day of admission to the hospital (day 0) to day 90 on patients diagnosed with
sepsis to assess the efficacy of corticosteroids treatment and investigate the biomarkers influencing the
patients’ sensitivity to corticotherapy.

Corticosteroids have been used for years to treat sepsis in addition to hemodynamic and respira-
tory support and antibiotic administration. However, both the safety and efficacy of corticosteroids
remain controversial (Fang et al. [2019]) and various systematic reviews and meta-analyses have either
confirmed (Annane et al. [2015]) or refuted (Liang et al. [2021]) any survival benefit.

In 2018, two large studies with random control trials were conducted (Annane et al. [2018],
Venkatesh et al. [2018]) and reported comprehensive analyses of the uses of corticosteroids in patients
with sepsis yielding opposite results. In the APROCCHSS study, low doses of hydrocortisone and
fludrocortisone were shown to reduce the 90-day mortality among patients with septic shock (Annane
et al. [2018]), however in the ADRENAL study, a continuous infusion of hydrocortisone in patients
undergoing mechanical ventilation did not result in lower mortality compared with patients receiving
a placebo (Venkatesh et al. [2018]). Although these studies differed on many levels (gravity of illness,
type of corticosteroids administered, etc..), the results remain ambiguous. The uncertainty about the
efficacy of corticosteroids to treat sepsis has resulted in a wide variation in clinical practice and current
guidelines provide only a weak recommendation for the use of corticosteroids in patients with septic
shock when other treatments have failed (Rhodes et al. [2017]).

In recent years, medicine has witnessed the emergence of machine learning as a novel tool to ana-
lyze large amounts of data. Many retrospective studies have shown that machine learning models can
be used to accurately predict sepsis and septic shock onset with good discrimination in retrospective
cohorts (Fleuren et al. [2020]). These models were shown to perform better when including variables
that have been known by clinicians to be important to sepsis determination and outperform the usual
scoring tools (Moor et al. [2021]). However, the general assessment of machine learning models’ per-
formance is still limited due to the vast heterogeneity of studies.

Another type of approach based on data-driven investigations has become increasingly popular.



The aim is to take advantage of the increasing quantity of data available including clinical data and
health history for individuals at risk and patients suffering from sepsis (Johnson et al. [2016]) using data
mining. Machine learning models can be used to leverage the information available and make accurate
predictions about which patient is developing sepsis or which patient is more likely to be sensitive
to corticosteroids (Fleuren et al. [2020], Thorsen-Meyer et al. [2020]). For instance, multiple stud-
ies have successfully employed a variety of computational models to tackle the challenge of predicting
sepsis at the earliest time point possible (McCoy and Das [2017], Barton et al. [2019], Kaji et al. [2019]).

Our main research questions are the following

e How can we improve predictions of patients’ responsiveness to corticosteroids based on data
collected during the first days of hospitalization?

e Can we improve model generalizability when training and testing on different cohorts?

In order to answer these questions, we used supervised learning techniques. Following previous
study Hellali et al. [2024], we used a similar supervised learning approach using APROCCHSS and
RECORDS data while refining the statistical analysis and leveraging modeling tools adapted to mixed
type data.

The following section describes the data and data collection process as well as the preprocessing
phase conducted in Hellali et al. [2024] and presents the system architecture of the data mining pipeline,
the models used, and the model selection process. Part 3 presents the results, and Part 4 highlights the
interpretations and limits of the results obtained through the application of the different approaches
presented above and provides directions for future work. Part 5 concludes this study.

2 Material and Methods

Both datasets include categorical and numerical variables, which means that we are dealing with mixed
type datasets. Our approach aims at taking this feature into account.

2.1 Datasets

The APROCCHSS dataset The APROCCHSS cohort data results from a randomized controlled
trial study on patients diagnosed with sepsis upon admission to the hospital. The data was collected
in the form of electronic case report forms, including all relevant personal and medical information for
each patient (demographics, medical history, treatment details, etc...) for 90 days of hospitalization on
1240 patients, with 612 no placebo patients who were administered corticosteroids. For each patient,
the database contains 5645 variables, including an indicator of whether they were treated using corti-
costeroids or not, as well as a label build with expert clinician’s help indicating whether the patient is
considered sensitive or resistant to corticosteroids in case they received the treatment (see Section 2.2
for more details on the label).

Before preprocessing, the data was reviewed by medical experts, and some patients were reclassified
from cortico-resistant to cortico-sensible, and others were considered outliers and thus removed from
the study. In the end, a total of 1234 sepsis patients remained in the database. Since our study aims to
build a model to predict patients’ responsiveness to corticosteroids, the present analysis only includes
patients from the APROCCHSS database who received corticosteroids, which is a total of 612 patients.
Thus the placebo patients were not used within this study. A description of the APROCCHSS database
is given in Table 1.



Group Cortico-sensitive | Cortico-resistant | Total
Treatment 233 379 612
Placebo 213 409 622

Total 446 788 1234

Table 1: Description of the APROCCHSS database including the distribution of cortico-sensitive and
cortico-resistant patients among the participants.

The RECORDS dataset The RECORDS project involves an adaptive clinical trial aiming to
assess the ability of biomarkers and algorithms derived from machine learning to predict patients’
sensitivity to corticosteroids and thus personalize treatment options in case of sepsis. The RECORDS
observational cohort used in this work project corresponds to the data collected during the first phase
of the RECORDS trials in the form of case reports on patients diagnosed with sepsis upon admission
to the hospital. So far, the RECORDS observational dataset includes a total of 747 patients, with 546
no-placebo patients who received corticosteroids.

The main characteristic of the RECORDS observational cohort is that the study took place in
2020 during the height of the COVID pandemic, which led clinicians to believe that there might be
notable differences between the patients in the RECORDS cohort and the pre-pandemic APROCCHSS
patients. A description of the RECORDS database is given in Table 2.

Group Cortico-sensitive | Cortico-resistant | Total
Treatment 235 311 546
Placebo 81 120 201
Total 316 431 747

Table 2: Description of the RECORDS database including the distribution of cortico-sensitive and
cortico-resistant patients among the participants.

2.2 Preprocessing

The raw databases used for this study contain a great number of variables that are not necessarily
of interest to clinicians, or that can be transformed to facilitate interpretation. The preprocessing
phase was divided into four main stages, including feature selection, missing values management, data
labelling and class balancing. The first three preprocessing tasks were performed in Hellali et al. [2024].

Feature selection The first stage of preprocessing is to select variables of interest to clinicians. In
our case, we used the same variables highlighted by experts as in Hellali et al. [2024]. In addition, since
the aim is to predict sensitivity to corticosteroids in the earliest stage of sepsis, we selected features
available close to the initial date of hospitalization, that is specifically at day 0, day 1, and a maximum
of day 2.

After removing the variables corresponding to the variables after Day 2, as well as the variable
of no interest to the experts, the total number of variables is reduced from 5645 to 238 features in
APROCCHSS and from 21388 to 84 features in RECORDS. In both cases, the selected features can
be categorized as either temporal or non temporal, with each category containing both numerical and
categorical variables.

e Non temporal data corresponds to the metadata and more generally to the data about the current
status of the patient and personal data (id, sex, weight, age, origin, date of hospitalization, and



treatments before hospitalization, etc...). These characteristics are recorded once at the time of
admission (day 0).

e Temporal data refers to the monitoring data recorded over 90 days after the time of admission.
These features are generally related to patients’ vital signs and laboratory tests and were recorded
at different intervals over 90 days of monitoring (site of infection and examination type are
recorded before giving treatment, and features such as the SOFA score or treatments doses are
recorded along every hospitalization day).

Managing missing values Both databases have a low rate of missing values, and we used the same
methods rule-based replacement conventions to handle missing values as Hellali et al. [2024].

e Replacing missing values using rule-based conventions: If the missing value is associated with
a dynamic, temporal feature, then the missing value is set to the previously recorded value for
that feature. If the missing value is associated with a static feature, then that value is set to -1,
to take into account the absence of information in the model.

Data labelling The data labelling is the same as in Hellali et al. [2024]. For every patient in
both cohorts, after enrolling in the study on day 0, no placebo patients begin receiving corticosteroid
treatment every 4 to 6 hours while their progress is monitored for 90 days maximum. The criteria
established by APHP medical experts to determine whether a patient responds to corticotherapy or
not is based on four indicators measured on day 14 of monitoring.

Patients are considered to be sensitive to corticosteroids (cortico-sensitive, label = 1) if the following
criteria are met after 14 days of treatment :

e The patient did not die.
e The patient did not receive vasopressor treatment over the previous 24-hour period.
e The patient did not require mechanical ventilation over the previous 24-hour period.

e The patient’s SOFA (sequential organ failure assessment) score measured on day 14 is less than
6. The SOFA score is used to track a person’s status during the stay in an intensive care unit
to determine the extent of a person’s organ function or rate of failure. The score is based on
six different scores, one each for the respiratory, cardiovascular, hepatic, coagulation, renal and
neurological systems. The lower the SOFA score, the better is the patient’s general state.

If any one of these criteria is not met, the patient is considered to be resistant to corticosteroids
(cortico-resistant, label = 0). Patients for whom the label could not be computed were removed from
the dataset.

Class balancing In our datasets, the number of patients who are considered sensitive to corti-
costeroids, the class of interest, is much smaller than the number of patients who are resistant to
corticosteroids. This class imbalance can pose a problem since most classification algorithms do not
perform as well when the data is skewed toward one class (Hasib et al. [2020]). To address the class im-
balance problem and improve performance prediction in the minority class (cortico-sensitive patients),
we used the SMOTE-NC (Ferndndez et al. [2018], Chawla et al. [2002]) method for mixed data types.



Dataset APROCCHSS | RECORDS
Percentage of Cortico-sensitive patients 38% 43%
Total number of Cortico-sensitive patients 233 235
Total number of patients 612 546

Table 3: Table of the APROCCHSS and RECORDS data class imbalance

2.3 Modelling approach

In the present study, we considered a binary classification problem and the variable of interest cor-
responds to the patient’s sensitivity to corticosteroids, which is encoded with the values {0, 1}, with
0 = cortico-sensitive and 1= cortico-resistant. We used four distinct types of model specification
corresponding to four data configurations. We also tested other specifications, including using only
day 0 data, day 0 and day 1 and we choose to present the following configuration because they were
performing better.

e First configuration using APROCCHSS data from day 0 to day 2, including variables computed
using the difference between daily variables, no placebo.

e Second configuration using RECORDS data from day 0 to day 2 including variables computed
using the difference between daily variables, no placebo.

e Third configuration using APROCCHSS and RECORDS data from day 0 to day 2, no placebo,
training on APROCCHSS and testing on RECORDS. Since the APROCCHSS dataset contains
variables that are not present in the RECORDS dataset, for this configuration the APROCCHSS
data is restricted only to the variables that are in the RECORDS dataset.

e Fourth configuration using APROCCHSS and RECORDS data from day 0 to day 2, no

placebo, training and testing on both APROCCHSS and RECORDS. Both datasets are com-
bined, and the variables missing from the RECORDS dataset are imputed using MissForests
(Stekhoven and Bithlmann [2012]) and the values from APROCCHSS. We used the MissForest
python package.
The MissForest imputation method is well adapted to mixed-type data and can handle both
continuous and categorical variables simultaneously, thus allowing us to account for possible
relations between these variables. For this method, missing values are imputed using Random
Forests trained on the observed parts of the dataset. For each variable, the missing values are
imputed by fitting a Random Forest with observed values and predictors including the other
variables and predicting the missing values by applying the trained Random Forest. The im-
putation procedure is repeated until the stopping criterion is met. The motivation behind this
configuration is to make best use of the whole infomation contained in both APROCCHSS and
RECORDS datasets.

Many standard machine learning techniques do not cope well with mixed-type datasets (Gutiérrez-
Goémez et al. [2020]). More generally speaking, for each configuration, we compared the performances
of several machine learning algorithms, including Logistic Regressions and Random Forests models
which were both shown to perform well on these datasets in Hellali et al. [2024] and can effectively
cope with mixed type data.

More specifically, for Random Forest models, we used the RandomForestClassifier from the scikit-
learn package with the default parameter setting, including an initial choice of 100 estimators, with
no specified maximum tree depth, which led to overfitting. For the Logistic Regression models, we



used the LogisticRegression classifier from the scikit-learn package with the default settings and we
chose the liblinear solver to ensure the model convergence. The scores used to assess the models’
prediction performances were evaluated by cross-validation (50 folds, with a 0.2 test/train ratio) us-
ing the cross_val_score function from scikit-learn, and the 95% confidence intervals were computed by
bootstrapping.

In both cases, we built a baseline model, unbalanced and unscaled data, with cross-validation,
training, and testing on the configuration’s data and another model using SMOTE-NC data (scaled
and balanced data depending on the type of variable). For each individual model, we used the same
three-step approach:

e A default model with no parameter optimization.

e A tuned model with parameter optimization using cross-validation to search the best parameter
from the parameter space available. We use the RandomizedSearchCV function of scikit-learn.

e A tuned model that includes feature selection to choose the variables contributing the most to the
classification and removing non-contributing variables. For the Random Forest models we used
the feature impurity criterion for selection that is implemented in the RandomForestClassifier
function of the scikit-learn package, and for the Logistic Regression models, we used model
coeflicients representing the change in the log odds for a one-unit change in each predictor
variable.

Feature Selection The main idea was to simplify the models, add interpretability, and identify
problems with the data or modeling approach by calculating a score measuring how often a feature is
used in the model and how much it contributes to the overall predictions. For Random Forest models,
we used average impurity decrease (Louppe et al. [2013]) to select the features of the training dataset
that are most predictive of the target variable. In the case of Logistic Regression models, we used the
coefficient of the features in the decision function (Thomas et al. [2008]). However we generally did
not observe any improvement in the models’ performance in terms of prediction when using feature
selection.

Evaluation metrics The first issue linked to class imbalance is that our model’s predictive perfor-
mances are not the same for both classes since the costs of different classification errors may vary as
a function of the ratio between classes of interest. In the present study, we used three measures of
predictive accuracy that we aim to maximize.

e Accuracy measures the number of correctly classified data instances over the total number of
data instances. In the case of unbalanced data, the error rates derived from measured predictive
accuracy are different whether we consider the predictive accuracy for the cortico-sensitive class
or the cortico-resistant class. The accuracy might be high because the classifier learns to classify
samples from the majority class accurately and fail to properly identify elements of the minority
class without incurring a heavy cost to the accuracy metric.

e Recall : This measure shows the rate of misclassified items from the minority class. The recall is
low in the case of unbalanced data because the classifier systematically fails to identify elements
from the minority class, which in our case corresponds to cortico-sensitive patients.

e AUC : The AUC is the area under the ROC curve, which corresponds to the TP (True Positive)
rate plotted against the F'P (False Positive) rate. It is a standard metric to evaluate the per-
formance of machine learning algorithms in classification problems at various threshold settings
indicating how much the model is capable of distinguishing between classes.



3 Results

This section presents the modelling results for each configuration described above using the AUC,
accuracy and recall as performance metrics. For each Random Forest model and Logistic Regression
model, we present the baseline (no balancing operation) results with hyper parameter tuning and
the results with class rebalancing using SMOTE-NC and hyper parameter tuning. We chose to only
present the results for the models with hyper parameter tuning since we did not observe any difference
between each step of the three step approach (for every model considered, the confidence intervals
for all metrics were overlapping), but the tuned models were both not subject to overfitting and were
generally more efficient computationally.

Configuration 1 To compare the baseline models, we first trained models using the APROCCHSS
data from day 0 to day 2 with minimal transformations, including no balancing operation and then
trained models using SMOTE-NC augmented data.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.804 0.727 0.407 0.840 0.746 0.836
value
Bootstrap [0.800, [0.724, [0.400, [0.836, [0.742, [0.831,
CI 95% 0.807] 0.730] 0.412] 0.844] 0.750] 0.841]

Table 4: Performance chart of the Random Forest models for the first configuration specifications and
hyperparameter tuning.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.777 0.718 0.593 0.806 0.739 0.773
value
Bootstrap | [0.774, [0.714, [0.586, [0.801, [0.734, [0.767,
CI 95% 0.780)] 0.720] 0.599] 0.810] 0.743] 0.779]

Table 5: Performance chart of the Logistic Regression models for the first configuration specifications
and hyperparameter tuning.

In all configuration 1 baseline models, the recall metric is always less than 0.6, which is coherent
with the class imbalance problem that we expected to observe in this situation: the model is good at
identifying the majority class that comprises most of the data, which is why the accuracy is high, and
systematically misclassify elements from the minority class. The same observations go for the baseline
Logistic Regression models as well, although we can see that both the accuracy and AUC values are
better for Random Forest models with non-overlapping confidence intervals. The recall metric however
is systematically higher for baseline Logistic Regression models, which is coherent with the idea that
Logistic Regression models are less sensitive than Random Forest to the class imbalance problem (Guo
et al. [2008]).

On the other hand, when applying the SMOTE-NC method to the APROCCHSS data, we can see
a significant improvement in all metrics, and the recall becomes higher for the Random Forest models
(SMOTE-NC recall for the hyper-tuning Random Forest model is in the intervals [0.831, 0.841] whereas
SMOTE-NC recall for the hyper-tuning Logistic Regression model is in the interval [0.767,0.779]).



Configuration 2 To go further, and to have a first understanding of the RECORDS dataset, we
adopted the same tools and modeling approach as in configuration 1 using RECORDS data.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.787 0.707 0.572 0.808 0.735 0.801
value
Bootstrap | [0.782, [0.702, [0.562, [0.803, [0.730, [0.794,
CI 95% 0.792] 0.712] 0.581] 0.811] 0.738] 0.807]

Table 6: Performance chart of the Random Forest models for the second configuration specifications
and hyperparameter tuning.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.731 0.684 0.607 0.761 0.705 0.761
value
Bootstrap | [0.725, [0.679, [0.597, [0.756, [0.701, [0.754,
CI 95% 0.736] 0.689] 0.615] 0.765] 0.709] 0.767]

Table 7: Performance chart of the Logistic Regression models for the second configuration specification
and hyperparameter tuning.

For both baseline models, the recall metrics are slightly better than they were for the baseline
models on APROCCHSS data with recall in [0.562, 0.581] for the Random Forest baseline and recall in
[0.597,0.615] for the baseline Logistic Regression. However, in the present study, we consider a recall
less than 0.7 is not satisfying for the detection of patients sensitive to cortico-steroids.

Comparing the baseline version of the Random Forest model on RECORDS data from day 0 to
day 2 with the SMOTE-NC version, we observe a significant improvement of the recall measure in
higher, non-overlapping confidence intervals (baseline recall is in [0.562, 0.581], SMOTE-NC recall is in
[0.794,0.807]). The same observation is also valid for the baseline Logistic Regression model with recall
in [0.597,0.615] and for the SMOTE-NC Logistic Regression model with recall in [0.754,0.767].And we
can further observe that the Random Forest models systematically perform better than the Logistic
Regression model for all metrics.

Configuration 3 In this configuration, models are trained on APROCCHSS data and tested on
RECORDS data. Since the APROCCHSS preprocessed dataset contains more variables than the
preprocessed RECORDS dataset, we reduced the APROCCHSS dataset to variables comparable to
the ones contained in RECORDS.



Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.788 0.712 0.582 0.814 0.736 0.803
value
Bootstrap | [0.783, [0.706, [0.572, [0.809, [0.731, [0.796,
CI 95% 0.793] 0.716] 0.591] 0.817] 0.740] 0.809]

Table 8: Performance chart of the Random Forest models for the third configuration specifications
and hyperparameter tuning.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.727 0.679 0.592 0.753 0.693 0.730
value
Bootstrap | [0.721, [0.673, [0.582, [0.747, [0.638, [0.722,
CI 95% 0.732] 0.683] 0.600] 0.757] 0.697] 0.736]

Table 9: Performance chart of the Logistic Regression models for the third configuration specifications
and hyperparameter tuning.

In this case, the baseline model performs moderately well based on the AUC and accuracy metrics
which are respectively in [0.783,0.793] and [0.706, 0.716] for the Random Forests and [0.721,0.732] and
[0.673,0.683] for the Logistic Regression. However, the recall metric is under 0.6 in both cases, which
shows that these models are not well-equipped to detect items from the minority class.

When using the SMOTE-NC re-balancing method, all performance metrics for both models are
significantly improved, with higher, non overlapping confidence intervals. More importantly, the recall
metric for the Random Forest model goes from [0.572,0.591] for the baseline version to [0.796, 0.809] for
the SMOTE-NC version and the recall metric for the Logistic Regression model goes from [0.582, 0.600]
for the baseline version to [0.722,0.736] for the SMOTE-NC version. Furthermore, on all performance
metrics considered, the Random Forest model with SMOTE-NC re-balancing is the best performing
model on that configuration, which is in alignment with previous observations based on the results
from the first two configurations. This satisfactory result tends to show that both datasets can be
combined, to build more general classifications models.

Configuration 4 In this configuration, both datasets are combined, and the values missing from the
RECORDS dataset are imputed using the MissForests imputation method on the APROCCHSS data
from day 0 to day 2 data.

Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.858 0.814 0.642 0.899 0.832 0.819
value
Bootstrap [0.822, [0.776, [0.563, [0.871, [0.797, [0.797,
CI 95% 0.891] 0.848] 0.716] 0.924] 0.864] 0.864]

Table 10: Performance chart of the Random Forest models for the fourth configuration specifications
and hyperparameter tuning.
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Baseline (no balancing operation) SMOTE-NC
AUC Accuracy Recall AUC Accuracy Recall
Average 0.722 0.651 0.552 0.762 0.690 0.751
value
Bootstrap | [0.694, [0.627, [0.502, 0.730, 0.663, [0.691,
CI 95% 0.750] 0.674] 0.599] 0.793] 0.716] 0.808]

Table 11: Performance chart of the Logistic Regression models for the fourth configuration specifica-
tions and hyperparameter tuning.

For all baseline models, the recall measures are below the 0.7 threshold, and the SMOTE-NC op-
eration is required to improve the recall. The observed improvement is however systematically higher
in the case of Random Forest models.

The Random Forest model with SMOTE-NC rebalancing in configuration 4 is the overall best per-
forming model in this study with an AUC in [0.871,0.924] and a recall in [0.797,0.864]. In this case,
the baseline models were also moderately well performing based on the AUC and accuracy metrics
which are respectively in [0.822,0.891] and [0.776, 0.848] for the Random Forests and [0.694, 0.750] and
[0.627,0.674] for the Logistic Regression. However, the recall metric are around 0.6 in both cases,
which shows that these models are not well-equipped to detect items from the minority class.

When using the SMOTE-NC re-balancing method, all performance metrics for both models are
significantly improved, with higher, non overlapping confidence intervals. More importantly, the recall
metric for the Random Forest model goes from [0.563, 0.716] for the baseline version to [0.797,0.864] for
the SMOTE-NC version and the recall metric for the Logistic Regression model goes from [0.502, 0.599]
for the baseline version to [0.691,0.808] for the SMOTE-NC version.
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Figure 1: (a) and (b): training and testing learning curves for the baseline Random Forest and
SMOTE-NC Random Forest models respectively with mixed APROCCHSS and RECORDS data from
day 0 to day 2, no placebo (configuration 4); (c) and (d): training and testing learning curves for the
tuned baseline Logistic Regression and SMOTE-NC Logistic Regression models respectively with mixed
APROCCHSS and RECORDS data from day 0 to day 2, no placebo (configuration 4)

General Results Across all configurations, Random Forests were found to be the best-performing
models. This could be explained by the fact that Random Forests are more sensitive to class imbalance,
and the SMOTE method used previously is not well suited to the characteristic of the dataset (mixed
type data). The performances of Random Forests using SMOTE-NC data are significantly improved
and the predictive performance of the proposed algorithms are very satisfactory as evidenced by the
evaluation metrics results. Another thing to note is that the confidence intervals are generally narrower
in configurations 1, 2 and 3 than in configuration 4 : the size order of confidence interval length in
configuration 1, 2 and 3 are 0.01-0.02 meanwhile it is 0.1 in configuration 4. This could be explained
by the imputation of a large number of variables in configuration 4.

4 Discussion
The present study has shown that Random Forest models, when handling properly the class imbalance
problem given the mixed nature of the data performed better than Logistic Regression models in terms

of prediction accuracy, AUC and recall. In our case, the improvement of the classifier’s sensitivity
that is assessed by the recall comes at the price of a reduced increase in accuracy. This is due to
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the fact that in being more sensitive and thus better classifying items from the minority class, the
chances of missclassifying elements from the dominant class increase and the accuracy is thus reduced.
Furthermore, we can see that mixing the RECORDS and APROCCHSS data as in configuration 3 and
configuration 4 also yielded promising results, which might indicate that the trained classifier could
be used on other cohorts in the future since the very good predictive results show the generalization
ability of the suggested algorithms.

4.1 Data stratification

Since the effect of corticosteroids has been shown to be heterogeneous and highly variable from one
individual to another, it might be interesting in further studies to look for relevant variables on which
we could stratify the data. However this is a difficult question to answer and our data exploration
phase using unsupervised learning to do clustering did not yield any conclusive results on that aspect.
The aim of this study was to observe what are the most distinctive features of both datasets and
see how these features relate to our variable of interest on cortico-sensitivity and asses what are the
differences between both datasets and how these differences might relate to cortico-sensitivity. To
better understand the underlying mechanisms of patients’ sensitivity to corticosteroids, we only used
the no-placebo data.

The clustering analysis did not yield conclusive results for two main reasons. The cluster separation
was not good quality and overall unreliable and more importantly, there was no observable link between
the clusters and label repartition. In addition, the variables influencing the most classification were
the scores indicating the gravity of the patient’s state (such as the SOFA, MACCABE, and KNAUS
indicators), which were used to compute the label on day 14.

4.2 Variable selection : model interpretability and robustness

In the present study we used several metrics as presented above to assess each variables’ influence on
classification to improve model interpretability. However, we encountered several issues, including the
fact that for each configuration and model, the variables that were assessed to be the most important
were inconsistent with each others.

In order to use the most natural variable importance metric depending on the model, we used
different approaches to evaluate variable importance from one model to the other. A possibility to
allow for better comparison would be to adopt a similar approach to evaluate variable importance
for both the Logistic Regression and the Random Forests models such as permutation importance for
instance, which corresponds to the decrease in a model score when a single feature value is randomly
shuffled. This measure is based on experiments on out-of-bag (OOB) samples in the case of Random
Forests, and the main idea is to void the predictive power of a feature without changing its marginal
distribution by randomly permuting the values of a feature in the OOB samples and seeing how it
affects the overall model performance. The decrease in accuracy as a result of this permuting is
averaged over all trees, and is used as a measure of the importance of the feature considered in the
Random Forest.

4.3 Generalization issues : handling missing data and class imbalance with
Random Forests

In previous studies Hellali et al. [2024], following clinicians’ hypotheses, the APROCCHSS and RECORDS
datasets were not mixed together, since it was suspected that there might be a difference due to the
high number of covid patients in the RECORDS dataset. In addition, the only model involving both
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datasets in Hellali et al. [2024] that was trained on APROCCHSS data and tested on RECORDS
data systematically under-performed in comparison with other models and shows very poor predictive
results. In the present study, we noticed that the observed under-performance of the previously con-
sidered models might have been partly due to the class imbalance problem that we addressed using
the SMOTE-NC variant of the class rebalancing SMOTE method to cope with mixed-type data.

The overarching aim of the RECORDS project is to develop point-of-care testing to quickly assess a
septic patient’s chances of being sensitive to corticosteroid treatment. To do that, it is crucial to assess
to what extent the classifier trained on RECORDS and APROCCHSS data can accurately predict
the label for patients with different characteristics. The results on the RECORDS and APROCCHSS
hybrid dataset showed that it is a reasonable hypothesis to assume that the data from RECORDS and
APROCCHSS were generated by the same underlying distribution. This indicates that the trained
classifier might perform adequately on other cohorts with different characteristics. To strengthen that
hypothesis, further work might involve looking for multivariate tests of law comparison that might
apply to our data sets.

The imputation problem One of the main stakes of using the RECORDS and APROCCHSS
datasets conjointly is the handling of missing data since there are features recorded in the APROCCHSS
dataset that are not present in the RECORDS trial data. In this case, the solution we used to join
both datasets while retaining as much information as possible was to predict the missing features of
RECORDS using Random Forest imputation on APROCCHSS data. However, this approach has
several issues that are still unaccounted for in the present study:

e Generating a large number of unobserved variables for the RECORDS data based on APROC-
CHSS data might erase cohort-specific effects and create a false sense of generalizability that we
cannot properly assess.

e Although our hybrid approach (configuration 4) yields very satisfactory results, it might not be
immediately generalizable to other datasets. For instance, there could be additional key variables
that are not well predicted, or variables introducing biases in the classification.

Injecting new RECORDS data into the analysis The main issue we encountered when trying
to include RECORDS data into the analysis based on the APROCCHSS dataset was that since the
RECORDS clinical study is still ongoing, the data we had access to for the present study was incom-
plete, and data collection strategy evolved since the APROCCHSS data collection period which means
that:

e Some key variables present in the APROCCESS dataset are absent from the RECORDS trial
data for now.

e The variable from the APROCCHSS dataset and the RECORDS data do not exactly match,
which means that some variables do not have the same name, which makes the data align-
ment more difficult, or some variables that should be equivalent were collected differently, which
introduces systematic differences between RECORDS and APPROCCHESS data.

e The larger RECORDS study in double blind has not been completed yet, so all the information
about the data is not available.

Dealing with imbalanced data Random Forests are built on decision trees, and decision trees are
sensitive to class imbalance in the sense that each tree is built on a ”bag”, and each bag is uniformly
sampled with replacement from the training data, which means that each tree is biased on average in
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the same direction and magnitude as the class imbalanced.

In the result section presented above, the strategy used to manage class imbalance for both Ran-
dom Forests and Logistic Regression models was the SMOTE-NC method, which relies on generating
synthetic samples of the minority class. In the case of Random Forests, we also considered different
options to deal with the issue of class imbalance: two types of class weighting can help mitigate the
effect of imbalance in classification tasks. The first technique is to weigh the tree-splitting criterion
(Agusta et al. [2019]) and the other is to oversample or undersample data points during bootstrap
sampling (Winham et al. [2013]). However, we did not observe significant differences between these
methods in terms of predictive performance. Further work might involve comparing these methods
using different metrics than the ones considered in the present study.

5 Conclusion

In the present study we defined a statistical approach to the supervised learning study results based
on the APROCCHSS and RECORDS datasets. To obtain comparable results with those previously
obtained (Hellali et al. [2024]), we carried out a study of several machine-learning models using appro-
priate tools to leverage mixed type and compared their performance on a binary classification task to
build classifiers predicting patient’s responsiveness to corticosteroids.

A second phase departing from the previous study explored different model specifications to assess
the generalizability of the Logistic Regression and Random Forest models by testing it using addi-
tional data collected over time or from different patient groups belonging to the APROCCHSS and
RECORDS cohort using tools adapted to mixed type data.

We saw that using the appropriate class balancing technique significantly improves models’ perfor-
mance in predicting corticosteroids sensitivity and allow for generalizations from cohort APROCCHSS
to RECORDS. Further work might involve discussing the definition of the label with medical experts
in light of previous machine learning studies and comparing classifiers based on different labels. In
particular, the current label is based on variables assessing the gravity of the patient’s state at a given
moment. It might be useful to test different types of labels taking into account the evolution of the
patient’s state for instance.
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