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A Multi-Objective Multi-Agent Interactive Deep
Reinforcement Learning Approach for Feature

Selection

Rahma Hellali1, Zaineb Chelly Dagdia1, and Karine Zeitouni1

Université Paris-Saclay, UVSQ, DAVID, France

Abstract. Feature selection is paramount in data preprocessing for op-
timizing feature subsets in machine learning tasks. Intriguing recent de-
velopments in this area are the Interactive Reinforced Feature Selection
methods, showing promise. However, they often prioritize singular met-
rics like accuracy, overlooking conflicting metrics or objectives. Moreover,
their reliance on a single trainer can hamper efficiency by providing repet-
itive advice. To tackle these issues, this paper presents a Multi-objective
Multi-agent Interactive Deep Reinforcement Learning method. We con-
ceptualize feature selection as a multi-objective problem and introduce a
novel reward assignment method that balances the Area Under the Curve
(AUC) measure and the number of selected features. Furthermore, we
propose a diverse trainer strategy that harnesses multiple trainers to pre-
vent repetitive guidance. This strategy leverages diverse external train-
ers for accelerated feature exploration and fosters self-exploration by the
agent. Our approach yields Pareto Front solutions, offering flexibility
for decision-makers in selecting the final optimal feature set. Empirical
results demonstrate superior performance compared to state-of-the-art
feature selection methods. Additionally, through the Pareto Front solu-
tions, our method effectively manages the trade-offs between AUC and
feature count.

Keywords: Feature selection · deep reinforcement learning · multi-agent
systems · multi-objective optimization.

1 Introduction

Feature Selection (FS) entails identifying a subset of the most pertinent features
for inclusion in a machine-learning model. This can enhance the performance
of a model thus mitigating overfitting and enhancing generalization. Recently,
reinforced FS methods [8,2] have emerged, treating FS as a Multi-Agent Deep
Reinforcement Learning (MADRL) task; where each feature is associated with
an agent responsible for selecting or deselecting its corresponding feature. In
general, MADRL methods focus on optimizing systems with a single goal and
finding a single solution. However, FS problems often have multiple conflicting
objectives, resulting in multiple feasible solutions known as the Pareto Front
(PF) set. These solutions effectively satisfy all objectives but are incomparable
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to each other. To the best of our knowledge, no existing work treats the rein-
forced FS problem as multi-objective. In our approach, we refine this problem
by formulating it as a multi-objective deep reinforcement learning, tackling two
conflicting objectives: minimizing the number of selected features while maxi-
mizing the classification Area Under the Curve (AUC) score. Also, in MADRL,
depending solely on self-exploration is insufficient to achieve both effectiveness
and efficiency in feature exploration. Recently, Interactive Reinforcement Learn-
ing (IRL) has emerged as a promising approach, drawing inspiration from real-
life biological learning scenarios and leveraging external knowledge. These IRL
methods [7] have shown effectiveness in accelerating the exploration of Rein-
forcement Learning (RL). This interactive learning paradigm offers an exciting
chance to incorporate teaching/guiding agents for more efficient exploration and
learning in FS tasks. Recently, [2] proposed an IRL method based on external
knowledge named trainers. However, their teaching strategy is employed for a
specific duration of the learning process, which can be defined by a given number
of iterations. Moreover, this strategy, based on a single trainer, tends to yield
similar advice when similar active features are used as input. Also, this pro-
cess remains static, as the same trainer continues to provide advice for a fixed
period. To overcome these limitations, our approach additionally introduces a
novel teaching strategy that enhances diversity and adaptability in providing
advice to the agents using different trainers. This is achieved by selecting the
best trainer advice in each iteration, ensuring that the agents receive more varied
and effective guidance throughout the learning process.

In this paper, we introduce an efficient approach called Multi-Objective In-
teractive Deep Reinforcement Learning with Multiple Agents (MOIDRL-MA),
tailored for feature selection. Our contributions can be summarized as follows:
(1) We frame the FS challenge as a multi-objective problem—a novel approach
not previously explored in the reinforced FS literature. The transition to a
multi-objective framework is pivotal for informed decision-making. Our method-
ology presents a diverse array of solutions, striking a delicate balance between
FS and classification performance. Decision-makers can select from these solu-
tions according to their preferences and constraints, thereby enhancing adapt-
ability in tackling real-world challenges. (2) We propose a multi-trainer teach-
ing strategy to diversify external guidance by using multiple trainers. This ap-
proach also incorporates varying advice to agents, ensuring that repetitive guid-
ance is minimized throughout the learning process, thereby enhancing the effi-
ciency of MOIDRL-MA. (3) We showcase the effectiveness of our newly proposed
MOIDRL-MA compared to RL and traditional FS methods, as well as the effec-
tiveness of our newly proposed multi-trainer teaching strategy.

2 Related Works

Various studies have been carried out utilizing RL for feature selection. Authors
in [5] introduced an RL approach based on a transformation graph that explores
the feature space and an RL-driven process focused on optimizing performance
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by identifying valuable features. The RL approach in [3] introduced an Aver-
age of Rewards criterion to evaluate the effectiveness of features based on their
impact on state transitions. Additionally, an iterative algorithm is utilized to
select the best subset of features using both filte and wrapper FS methods. In
[6], a method employing multi-agent RL with a guiding agent was introduced.
Each feature corresponds to a main and guide agent, jointly deciding feature
selection. Main agents optimize feature selection using guide agent criteria, up-
dating Q-values based on behavior differences. Authors in [9] introduced an RL
single agent approach based on a reward and training levels interactive strategy
to improve training efficiency with external advice. On the other hand, works
on deep RL have been conducted focusing on MADRL for FS. Authors in [8]
redefined FS within a deep RL framework, treating each feature as an individ-
ual agent. They acquired environment states through three distinct methods:
statistical description, autoencoder, and graph convolutional network (GCN),
enhancing the algorithm’s comprehension of the learning process. Additionally,
they investigated enhancing coordination among features by employing diverse
metrics for computing rewards. Building upon [8], authors in [2] expanded the
MADRL approach by incorporating a novel concept inspired by IRL. They intro-
duced a hybrid teaching strategy, where different trainers take on the teaching
role iteratively at different stages. This strategy enables agents to acquire a di-
verse range of knowledge. However, despite its iterative nature, the strategy may
lead to redundancy, as a single trainer might offer similar advice. Furthermore,
the hybrid process remains static, with the same trainer providing advice for a
fixed number of episodes. As previously mentioned, MADRL approaches typi-
cally aim to optimize systems for a single objective, seeking a unique solution. It
is noteworthy that despite the existence of Multi-Objective Deep Reinforcement
Learning (MODRL) works, none have addressed the reinforced FS problem from
a multi-objective perspective. In MODRL, each objective is associated with its
reward signal, resulting in a reward vector instead of a single numerical value.
Actions are selected based on this reward vector to attain optimal solutions.
Various algorithms have been proposed to find these optimal solutions, catego-
rized into two groups based on the number of optimal policies they identify [4]:
(1) single-policy algorithms, which aim to find the best solution closest to the
optimal policy, determined by preferences among objectives defined according to
the problem domain or user feedback, and (2) multiple-policy algorithms, which
are geared toward discovering a collection of optimal solutions that approxi-
mate the Pareto Front set. To go beyond the state of the art and to mitigate
the limitations of recent works, specifically [2], we introduce MOIDRL-MA that
adopts multi-objective, interactive deep RL, multiple agents, and a multi-policy
paradigm which enables agents with distinct policies to pursue unique strategies.

3 Proposed Method

The MOIDRL-MA pseudo-code is given in Algorithm 1, respectively. Initially, a
feature agent is assigned to each feature slated for exploration (Algorithm 1, lines
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10-16), tasked with determining its inclusion in the final selection. Before final-
izing the selected feature subset that forms the environment, each agent receives
guidance from trainers regarding whether to adjust its decisions based on past
actions taken during previous episodes (Section 3.1). Specifically, for each trainer,
a score is calculated based on the previously selected features (active agents).
Subsequently, the adviser trainer will be identified as the one with the highest
score. Advice will be provided solely to agents that opt to deselect their features
(indecisive). The resultant feature subset becomes the environment in which fea-
ture agents engage in interactions (Algorithm 1, lines 17-30). In feature subspace
exploration, the number of selected features varies resulting in a changing length
of the state representation vector. Thus, we adopt the descriptive statistics state
representation method described in [8] (Algorithm 1, line 9). Simultaneously, the
actions carried out by feature agents contribute to a cumulative reward, which
is then distributed among the participating agents. As MOIDRL-MA is built
upon a multi-objective framework, we assess the overall reward by taking into
account both AUC and the number of selected features in the downstream task
(Section 3.2) (Algorithm 1, line 31). Our framework includes a control stage ded-
icated to training the agent, storing experiences, and accelerating the training
process. To expedite training, each agent possesses a memory unit where tuples
containing the state, action, reward, and next state are stored after each episode.
Subsequently, each agent uses its corresponding Deep Q Network (DQN) to train
its policies by randomly sampling mini-batches from this memory (Section 3.3).
The agents iteratively update their policies based on the sampled experiences,
gradually refining their decision-making capabilities and ultimately converging
towards the selected final feature space (Algorithm 1, lines 34-37). The key com-
ponents of our MOIDRL-MA are the following: Multi-Agent: we consider N
features and create N agents each assigned to a specific feature and each of them
trains a DQN. Each agent’s role is to determine whether its corresponding fea-
ture should be selected or not. Actions: Agents have two actions: selecting or
deselecting their features. Environment: It corresponds to the selected feature
subset. When a feature agent takes action to either include or exclude a feature,
the state of the feature subspace is accordingly modified. Additionally, the en-
vironment includes the actual AUC calculated based on the previously selected
feature subset, along with the previously calculated AUC. These are crucial for
reward assignment. State: The state s represents the selected feature subset.
Our scenario presents a challenge as the state’s length varies with each iteration,
unlike in DQN scenarios where the input shape remains constant. To address
this, we use meta-descriptive statistics outlined in [8] to derive the representa-
tion of s. Reward: The reward serves as an incentive for exploring the feature
subspace. We evaluate the overall reward by considering the AUC score and
the number of selected features subset in the downstream task and distribute
it equally among agents that select features in the current step. Trainer: The
trainer acts as the provider of guidance to the feature agents.
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Algorithm 1 MOIDRL-MA Algorithm
Require: Number of Features: N , Epsilon value: ϵ, Learning Rate: γ, Number of

Episodes: Max_episodes, Number of trainer steps: trainers_steps
1: for i in range(N) do #initialize the agents
2: create Agenti models
3: end for
4: Vectors_list ← [0,0] * Max_episodes
5: STATE = reset the environment by taking randomly a feature subset
6: previous_actions = [i for i in range(N)]
7: previous_AUCScore = calculate_AUC(previous_actions)
8: for timestep in range(Max_episodes) do
9: State_vectors = State_representation(State) #meta-descriptive

10: for j in range(N) do
11: if random value > ϵ then
12: Agentj do Exploitation
13: else
14: Agentj do Exploration
15: end if
16: end for
17: #Multi-Trainer Strategy
18: active_agents = previous_actions
19: initial_actions = selected_features(actions)
20: if timestep ≥ Guides_steps then
21: Confident_agents = Calculate_Confidents (active_agents, initial_actions)
22: Indecisive_agents = Calculate_Indecisives (active_agents, initial_actions)
23: for i in range(guides) do
24: Score, advice = calculate_Guide(active_agents)
25: end for
26: Best_trainer_score = Max(Score)
27: selected_feature = advice
28: else
29: selected_feature = Intersection(active_agents, initial_actions)
30: end if
31: Reward, aucScore = calculate_reward(selected_feature, active_agents, previ-

ous_actions, previous_AUCScore) # Multi-Criteria Reward Allocation
32: State_next, State_next_vector = Calculate_NextState(selected_feature)
33: Vectors_list[timestep] = [aucScore, feature_number] #save all vectors
34: for i in range(N) do # Experience replay and training process
35: rewards_sample = Select_MiniBatch()
36: Q_Value of Agenti = rewards_sample Agenti + γ× Future_Rewards
37: end for
38: STATE = STATE_next
39: previous_actions = selected_feature
40: previous_AUCScore = aucScore
41: end for
42: Non_dominated_solutions = Pareto_Front(Vectors_list)
43: Return Non_dominated_solutions
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3.1 Multi-Trainer Strategy

Addressing the concern of repetitive advice from a single trainer regarding sim-
ilar input features, we draw inspiration from [2] and introduce a new teaching
approach. This method utilizes FS algorithms to empower external trainers in
effectively guiding agents. Central elements of our multi-trainer strategy involve:

Active/Inactive Features (Agents): To vary the feature inputs provided
to trainers, we dynamically adjust inputs by selecting features known as "active
features". These are features chosen by agents in the previous step. For example,
if at step t− 1, agents select f2 and f5, the active features at step t are f2 and
f5. Agents associated with these active features are termed "active agents" Fa,
while the remaining agents are considered as "inactive agents" who select or
deselect their corresponding inactive features.

Confident/Indecisive Features (Agents): We dynamically categorize ac-
tive features into: confident and indecisive features, linked with confident and
indecisive agents, respectively. At each step t, features chosen by the agents are
categorized as confident features, while those not chosen are termed indecisive
features. For example, if at step t, confident features include f2 and f5, and
agents agt2 and agt5 opt to select f2 and deselect f5, then f2 becomes a con-
fident feature with agt2 as its corresponding agent, while f5 is marked as an
indecisive feature with agt5 as its corresponding indecisive agent.

Advice and Initial Selections: Agents use their policy networks to make
initial decisions at each step. They seek guidance from external trainers and ad-
just their actions accordingly, known as "advised actions." Consequently, only
indecisive agents follow the advice and execute the advised actions, while con-
fident agents retain their initial choices without modification based on trainer
guidance.

Prior to calculating the indices of agents necessitating adjustments, we col-
lect their inputs and evaluate a performance metric (e.g., F1) for each trainer
based on the involved agents’ performance (Fp). Our method allows for a cus-
tomized set of trainers, such as K-best, LASSO, and Recursive Feature Elimina-
tion (RFE), defined by the user. At the current step t, we initialize the trainer
set as T = T1, . . . , Tn. Each trainer Ti is trained on Fp to obtain its performance
metric. Then, we determine the winning trainer, which advises the indecisive
agents with the highest performance score. This ensures that in every iteration,
the most effective guidance is selected from the trainer set T , thereby enhancing
the teaching process and promoting better exploration. Specifically, during explo-
ration, the presence of randomness may lead to the inclusion of similar features.
Consequently, when similar features are present, a single trainer may offer com-
parable advice. To tackle this, our approach encourages diversified exploration
by involving multiple trainers, each offering distinct advice. Furthermore, relying
solely on guidance from a single trainer throughout the execution period may
result in sub-optimal outcomes, potentially exposing agents to imprudent advice.
By including guidance from multiple trainers with the highest scores, our method
strikes a balance and mitigates the impact of poor advice. The self-learning abil-
ity of agents may diminish if they consistently rely on trainers’ guidance. To
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address this, agents gradually transition to independent exploration and learn-
ing after reaching half of the episode count, choosing to incorporate only the
features deemed confident by the agents themselves (Algorithm 1, lines 17-30).

3.2 MODRL-based Strategy for Allocating Rewards

Our MOIDRL-MA builds upon the framework of MADRL. In our approach,
each agent operates its own policy network to decide whether to include or ex-
clude its corresponding features. Therefore, MOIDRL-MA adopts a multi-policy
paradigm, where different agents are equipped with distinct policies π1, . . . , πN ,
with N representing the number of agents, enabling them to pursue unique
strategies or rules. To integrate the multi-objective paradigm into the MADRL
FS problem and adapt our approach to MODRL, we incorporate preferences
into the reward assignment function. Many commonly used criteria incorporate
an AUC score measure adjusted by the penalty associated with the number of
selected features [1]. MOIDRL-MA maintains control over both AUC and the
number of features in each iteration, comparing them against those of the pre-
vious iteration. If the AUC score increases, a reward is equally assigned to all
selected feature agents, regardless of the number of features. Conversely, if the
AUC score decreases, a penalty is equally assigned to all feature agents, irrespec-
tive of the number of features. Consequently, when the AUC score remains the
same as in the previous iteration, a penalty is assigned if the number of features
increases; otherwise, all feature agents receive a reward. The penalty measure
varies by method in multi-objective feature selection. While [10] uses a hyper-
parameter α multiplied by entropy, we chose to use the sum of information gain
(IG) instead. This change was made because entropy overly diminishes the re-
ward, potentially distorting reward allocation in RL. The sum of IG SIG(input)
is defined as:

SIG(SF ) =
∑
i

IG(Xi;Y ) (1)

where SF is the set of selected features, IG(Xi;Y ) is the IG between feature
Xi and the target variable Y . Thus, the penalty formula is expressed as:

Penalty = AUC − α ∗ SIG(SF ) (2)

We record reward vectors for AUC and selected features during MOIDRL-
MA execution. After the maximum episodes, we extract PF solutions from the
accumulated training vectors (Algorithm 1, line 42).

3.3 Feature Subspace Exploration via Experience Replay

Experience Replay (ER) enhances RL efficiency. After each action, the most
recent sample for agent i at episode t containing action (ati), reward (rti), cur-
rent state (sti), and next state (st+1

i ) is stored in memory, replacing the oldest
sample. Indecisive agents train their policies using ER by randomly selecting
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mini-batches from this memory. Each agent trains its DQN with these mini-
batches to maximize long-term rewards, as follows:

Q(sti, a
t
i) = rti + γ max Q(sti, a

t+1
i ) (3)

where γ indicates the discount factor (Algorithm 1, lines 34-37).The algo-
rithm persists until it reaches the maximum number of episodes.

4 Experimental Setup

We address the following Research Questions (RQ), utilizing the datasets out-
lined in Table 1: RQ1: How does our MOIDRL-MA, leveraging its Pareto Front
solutions generated through our newly introduced multi-objective component,
fare against existing reinforcement and traditional feature selection approaches?
RQ2: How does our new teaching strategy enhance advice diversity for feature
agents, and thereby improve the efficiency of MOIDRL-MA?

Table 1. Experimental datasets

Dataset # Features # Instances # Classes
Wisconsin Breast Cancer (WBC) 32 569 2

Forest Cover Type (FCT) 54 15120 7
Spambase (Spam) 57 4601 2

Insurance Company Benchmark (ICB) 86 9822 2
Musk 166 6598 2

Toxicity 1203 171 2
Colon Cancer (Colon) 2000 62 2

Leukemia (LEU) 5148 72 2
ARCENE 10000 201 2

Mixed-lineage leukemias (MLL) 12534 72 3
LUNG 12601 203 5

Gene expression cancer RNA-Seq (RNA) 16383 801 5
TCGA Kidney Cancers (KIRC) 20532 1024 2

To address RQ1, we evaluated MOIDRL-MA against methods from the lit-
erature [6], [2], [8], [5], and [3] and four baseline algorithms: (i) mRMR, using
the average number of features from MOIDRL-MA PF solutions; (ii) RFE, using
the average number of features from MOIDRL-MA PF solutions; (iii) LASSO
with a regularization weight λ = 1.0; and (iv) Genetic Feature Selection (GFS)
with a crossover probability of 0.7, mutation probability of 0.1, and 50 genera-
tions. The comparison methodology consists of evaluating MOIDRL-MA against
established RL feature selection approaches and widely used baseline algorithms
to highlight its efficacy and contributions. For RQ2, we compared MOIDRL-MA
to IRFS-HT [2], using meta-description statistics instead of GCN for state rep-
resentation, with a mini-batch size of 64, AdamOptimizer with a learning rate of
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0.01, a discount factor γ of 0.99, and a memory size of 2000 for experience replay.
Our DQN consists of two ReLU layers with 64 and 8 nodes, respectively. We used
1000 episodes for the LEU, ARCENE, MLL, LUNG, RNA, and KIRC datasets,
and 5000 for WBC, FCT, Spam, ICB, Musk, Toxicity, Colon, and ARCENE.
Downstream tasks use logistic regression for WBC, random forest for FCT, ICB,
Musk, and KIRC, XGBoost for Spam, Toxicity, MLL, and RNA, and SVM for
Colon, LEU, ARCENE, and LUNG, with default parameters in scikit-learn. The
data is randomly split into training data (70%) and test data (30%). All evalua-
tions are conducted on a Python framework GPU with 128 GB RAM running a
64-bit Linux OS. All relevant implementation specifics and parameters can be ac-
cessible in our open-source code:https://github.com/HellaliRahma/MOIDRL-MA.
In Tables 2 and 3, numbers in parentheses indicate selected features, except in
the “Dataset” column where they represent initial features. For Table 2, only
[6] and [3] provide the number of selected features. Table 2 compares datasets
from literature solely based on Accuracy (%), with unreported results denoted
by “-”. Table 3 reports results based on the Area Under the Curve (AUC). In
our approach, we use the k-best and decision tree trainers. Recalling that we
can use T trainers, we use only two trainers to allow comparison with IRFS-HT.
To calculate index adjustments for agents, we set: K-best: If the trainer finds
an indecisive feature to be superior to at least half of the active features, then
the corresponding agent should shift from deselecting to selecting that feature.
We determine the number of confident features as m = |Fc| and the number of
indecisive features as n = |Fi|. Then, we set the integer k = ⌈2m + n⌉. Next,
we employ K-best to select the top k features in Fa, denoted as FKBest. The
indices of agents requiring action adjustments encompass all indecisive agents
|Fi| belonging to FKBest. Decision tree: We train it on Fa and obtain features’
importance scores, denoted by impfa1 , . . . , impfat . For indecisive features Fi,
their importance is defined as IMPi = impfaj

|faj ∈ Fi; for confident features
Fc, their importance is : IMPc = impfaj

|faj ∈ Fc. We denote the median of
IMPc as g. The indices of agents requiring action adjustments encompass all
indecisive agents |Fi| that are superior to g.

5 Results and Discussions

Table 2 demonstrates that among the Pareto Front solutions, MOIDRL-MA con-
sistently exhibits superior performance compared to other RL feature selection
methods in most cases. In Colon, MOIDRL-MA achieves the highest accuracy.
Among its 5 PF solutions, it achieves an accuracy of 95.8% with only 8 fea-
tures. In contrast, [6] reported an accuracy of 94.7% with 38 features and 73%
with 40 features for [3]. This significant contrast underscores the importance of
MOIDRL-MA’s components, rooted in deep learning, interactive RL, and multi-
objective considerations. [6] relies on simple multi-agent RL, which may result
in less accurate decision predictions compared to those achieved through deep
learning techniques. Moreover, the approach proposed by [3] relies on a single
agent, wherein each iteration requires the agent to iterate through 2N possibil-

https://github.com/HellaliRahma/MOIDRL-MA
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ities (actions), potentially leading to the attainment of only local optima. This
contrasts with our MOIDRL-MA framework, where each agent makes simple
decisions: selecting or deselecting features. In SPAM, among its 22 PF solutions,
MOIDRL-MA outperforms [2] (93.3%). This superiority can be attributed to the
strategy of diversifying the trainer in each episode, as opposed to maintaining
the same trainer throughout all episodes. Such a diversified approach can sig-
nificantly influence the training process, ultimately enhancing the algorithm’s
performance. Regarding the comparison with [3] (82.9%, 20 features), our ap-
proach also demonstrates superior performance due to its multi-agent compo-
nent as explained above. [6] reported an accuracy of 96.3% with 20 features,
and [5] reported an accuracy of 96.1%. In comparison to these, our approach
still demonstrates comparable PF solutions, albeit with a slight decrease in ac-
curacy to 93.2%, yet allowing for only 16 features, for instance. Regarding FCT,
the PF solutions generated by our method do not reach the highest accuracy
reported by [6] (88%); however, they perform better than [2] (80%) and are
close to [8] (87.3%). We found solutions with slightly lower accuracy (86%) but
a significant reduction in the number of features: 27 for MOIDRL-MA com-
pared to 33 for [6]. This can be attributed to the importance of multi-objective
flexibility in considering solutions that may still be relevant to decision-makers.
Similarly, from Table 3, it can be observed that in almost all cases, among its
PF solutions, MOIDRL-MA exhibited superior performance compared to the
baseline methods; in terms of both objectives. For example, observing one PF
solution, for Toxicity, our method achieved an AUC of 88.3% with 31 features,
whereas mRMR registered an AUC of 61.5%, RFE reached 76.8%, GFS obtained
75.7% with 624 features, LASSO achieved 75.3% with 879 features, and the no-
use scenario yielded to an AUC of 65.2%. Our MOIDRL-MA notably reduces
the number of features from an initial 1203 to just 31 selected final features;
with the highest AUC. Similarly for datasets with a larger number of features,
MOIDRL-MA demonstrated superior performance. For instance, in KIRC, our
method achieved an AUC of 91%, while mRMR 90.9%, RFE 81.8%, GFS 90.1%
with 10185 features, LASSO 89.7% with 852 features, and the no use scenario
registered an AUC of 81.8%. Moreover, our MOIDRL-MA remarkably reduces
the number of features from an initial 20532 to just 17 final selected features.
In conclusion, and to respond to RQ1, MOIDRL-MA, demonstrated promise
in surpassing existing (deep) reinforcement and traditional FS approaches. By
leveraging multi-objective optimization, we have successfully achieved PF solu-
tions that provide decision-makers with a diverse range of options. This not only
enhances the flexibility and adaptability of MOIDRL-MA but also underscores
its practical utility in real-world scenarios. Additionally, while it is acknowl-
edged that certain methods may occasionally outperform our approach in terms
of Acc/AUC, a critical observation reveals the superiority of our method in
substantially reducing the number of features in most cases. Table 3 illustrates
the efficiency of our new teaching strategy compared to IRFS-HT. In the RNA
dataset, our method achieves a comparable AUC of 99.8% among the PF solu-
tions, while IRFS-HT achieves 99.7%. However, our approach notably reduces
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the feature count to 63 features, while IRFS-HT employs a high number of 8207
features. In the KIRC dataset, our method shows strong AUC performance at
91%, compared to IRFS-HT’s 89.7%. Furthermore, our approach utilizes only
17 features compared to IRFS-HT’s notably high count of 10165 features. These
results can be attributed to the integration of the concept of the winning trainer,
which provides advice instead of relying solely on a single trainer. This approach
significantly enhances the algorithm’s performance by ensuring that the best
advice, with the highest score, is used to adjust the agents’ decisions. Moreover,
by repeating this process in every episode instead of selecting specific intervals
to change the trainer, the approach remains dynamic. This dynamism ensures
that the provided advice evolves continuously throughout the execution pro-
cess, contributing to the algorithm’s adaptability and effectiveness. Moreover,
IRFS-HT provides only one solution, identifying the solution with the highest
AUC as a singular outcome. However, for the KIRC dataset, the obtained PF
solutions reveal 17 non-dominated solutions with MOIDRL-MA. These solutions
offer decision-makers various combination possibilities, underscoring the impor-
tance of carefully weighing priorities when selecting the most suitable solution for
their needs. Figure 1 shows that MOIDRL-MA consistently outperforms IRFS-
HT. MOIDRL-MA exhibits stable convergence at approximately 83% AUC from
episode 750 onwards, while IRFS-HT remains unstable and fails to converge. Fig-
ure 2 highlights that MOIDRL-MA reduces the number of features more effec-
tively than IRFS-HT. While IRFS-HT’s feature count remains high and stable
after episode 750, MOIDRL-MA reduces its feature count to under 1,000 by
episode 750, demonstrating superior performance and decision-making through
its teaching strategy. In conclusion, and to address RQ2, our MOIDRL-MA in-
dicates promising potential in surpassing IRFS-HT, as evidenced by significant
differences observed in feature reduction while maintaining high AUC perfor-
mance. This endorses the effectiveness of our proposed new teaching strategy. A
key challenge of the proposed method is its high memory and time consumption
due to creating a DQN for each feature. This leads to significant computational
costs as the number of features increases. To address this, we are currently devel-
oping a selective learning process that focuses on training only indecisive agents,
aiming to reduce resource usage and execution time.

Table 2: MOIDRL-MA vs (deep) RL methods (Accuracy (%))

Dataset #
PF

MOIDRL-MA [6] [2] [8] [5] [3]

WBC
(32)

8 92.3 (1), 97.9 (4), 96.5 (2), 97.2 (3), 97.2 (3),
96.5 (2), 97.9 (5), 98.6 (9)

98.2
(17)

– – – –

FCT (54) 17 85.4 (25), 85.2 (23), 85.4 (24), 85.7 (26), 54.7
(1), 85.1 (18), 84.0 (10), 75.1 (8), 87.1 (39),
69.8 (5), 68.9 (4), 59.3 (2), 71.1 (6), 77.7 (9),
86.2 (27), 86.7 (32), 72.7 (7)

88
(33)

80 87.3 – –
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Spam
(57)

22 95.8 (33), 95.8 (37), 95.9 (41), 95.7 (29),
95.7 (32), 95.9 (39), 95.3 (25), 94.9 (24), 95.3
(26), 80.4 (1), 85.8 (3), 93.2 (16), 92.2 (10),
92.7 (15), 90.0 (9), 87.3 (4), 87.6 (6), 83.2
(2), 92.5 (13), 89.5 (8), 94.1 (20), 89.4 (7)

96.3
(20)

93 – 96.1 82.9
(20)

ICB (86) 20 90.8 (11), 95.4 (35), 92.0 (13), 93.5 (16),
95.6 (45), 90.8 (10), 95.9 (78), 95.9 (46), 94.4
(23), 64 (1), 93.3 (14), 91.8 (12), 94.9 (27),
95.6 (44), 89.1 (8), 94.2 (20), 94.1 (19), 95.3
(29), 89.1 (7), 83.8 (2)

94.3
(27)

91 – – –

Musk
(166)

14 87 (5), 77.1 (2), 95.6 (32), 98.1 (62), 94.4
(17), 83.9 (4), 95.0 (21), 91.9 (12), 89.5 (6),
69.1 (1), 82.7 (3), 92.5 (13), 90.7 (8), 93.2
(14)

98.4
(30)

98 – – –

Colon
(2000)

5 83.3 (2), 95.8 (8), 87.5 (7), 87.5 (4), 79.1 (1) 94.7
(38)

– – – 73
(40)

ARCENE
(10000)

8 72 (3), 78 (7), 75 (5), 86 (129), 81 (20), 73
(1), 88 (867), 88 (406)

– – – – 86
(70)

Table 3: MOIDRL-MA vs IRFS-HT vs classical FS algorithms
(AUC (%))

Dataset #
PF

MOIDRL-MA IRFS-
HT

mRMRRFE GFS LASSONo
Use

WBC
(32)

8 92.3 (1), 97.9 (4), 96.7 (2),
97.3 (3), 97.3 (3), 96.7 (2),
98.1 (5), 98.7 (9)

98.6
(11)

97.6
(4)

93.9
(4)

97.8
(14)

97.2
(28)

94

FCT
(54)

17 91.6 (25), 91.4 (23), 91.5
(24), 91.7 (26), 73.5 (1), 91.4
(18), 90.7 (10), 85.5 (8), 92.5
(39), 82.4 (5), 81.9 (4), 76.3
(2), 83.2 (6), 87 (9), 92 (27),
92.3 (32), 84.1 (7)

86.5
(34)

82.9
(16)

54.7
(16)

86.2
(32)

85.5
(52)

85.5

Spam
(57)

22 95.9 (33), 95.9 (37), 96 (41),
95.8 (29), 95.8 (32), 95.9
(39), 95.3 (25), 95.0 (24),
95.4 (26), 80.5 (1), 86 (3),
93.2 (16), 92.3 (10), 92.7
(15), 90.1 (9), 87.4 (4), 87.7
(6), 83.3 (2), 92.5 (13), 89.6
(8), 94.1 (20), 89.5 (7)

96.2
(34)

93.1
(18)

93.9
(18)

95.2
(34)

96.5
(55)

95.4
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ICB (86) 20 90.9 (11), 95.5 (35), 92 (13),
93.6 (16), 95.6 (45), 90.9
(10), 95.9 (78), 95.9 (46),
94.5 (23), 63.9 (1), 93.3 (14),
91.9 (12), 94.9 (27), 95.6
(44), 89.2 (8), 94.3 (20), 94.1
(19), 95.4 (29), 89.1 (7), 83.8
(2)

96.2
(68)

92.6
(23)

94.5
(23)

95.7
(55)

96.3
(83)

96.1

Musk
(166)

14 87 (5), 77.3 (2), 95.7 (32),
98.2 (62), 94.5 (17), 83.9 (4),
95 (21), 92 (12), 89.4 (6),
69.7 (1), 82.7 (3), 92.6 (13),
90.8 (8), 93.2 (14)

95.6
(73)

82
(14)

80.8
(14)

92.8
(95)

87.6
(164)

88.2

Toxicity
(1203)

9 91.4 (588), 84.2 (10), 90.1
(556), 88.5 (109), 75 (1),
81.1 (2), 83 (8), 88.3 (31),
84.3 (21)

86.9
(957)

61.5
(147)

76.8
(147)

75.7
(624)

75.3
(879)

65.2

Colon
(2000)

5 85.7 (2), 96.4 (8), 89.3 (7),
87.9 (4), 77.9 (1)

95.8
(957)

70.8
(4)

66.6
(4)

91
(990)

95.8
(541)

83.3

ARCENE
(10000)

8 73.5 (3), 78.2 (7), 75 (5), 86
(129), 81.3 (20), 72 (1), 87.8
(867), 87.8 (406)

87
(4968)

69
(178)

79
(178)

87
(5084)

70
(71)

83

LEU
(5148)

4 80.4 (1), 97.1 (4), 87.0 (3),
84.1 (2)

96.5
(2489)

89.6
(4)

89.7
(4)

98.5
(2520)

93.1
(338)

96.5

MLL
(12534)

9 92.8 (19), 97.7 (113), 95.4
(57), 95.2 (47), 95.1 (36),
90.8 (7), 85.9 (3), 76.1 (1),
76.1 (1)

96.1
(6144)

88.4
(32)

92.3
(32)

98.1
(6205)

84.6
(500)

92.3

LUNG
(12600)

13 98.6 (23), 97.4 (12), 91.3 (3),
85.3 (2), 92.3 (5), 96.2 (8),
98.0 (14), 71.3 (1), 71.3 (1),
99.7 (37), 98.3 (18), 95.1 (7),
99.1 (24)

99
(6142)

97.6
(17)

98
(17)

99.1
(6263)

99.5
(1365)

95.1

RNA
(16383)

19 99.7 (55), 96.1 (10), 99.1
(31), 98.1 (21), 96.9 (12),
95.6 (8), 94 (6), 74.1 (2),
67.3 (1), 99.2 (32), 91.7 (4),
88.5 (3), 99.8 (63), 97.9 (15),
99.8 (102), 99.2 (35), 99.6
(47), 98.9 (23)

99.7
(8207)

99.7
(30)

99.3
(30)

99.7
(8253)

99.7
(2910)

99.5
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KIRC
(20532)

17 94.7 (493), 93.5 (210), 97.9
(4525), 85.7 (13), 81.1 (9),
85.4 (10), 70 (2), 95.7
(3952), 78.5 (7), 86.8 (16),
91.3 (70), 66.1 (1), 75.5 (3),
81.1 (9), 92.6 (92), 91 (17),
77.6 (4), 98.9 (23)

89.7
(10165)

90.9
(555)

81.8
(555)

90.1
(10185)

89.7
(852)

81.8
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Fig. 1. The AUC performance per episode on the MLL dataset
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Fig. 2. The count of selected features per episode on the MLL dataset

6 Conclusion

MOIDRL-MA integrates interactive deep reinforcement learning with multi-
objective optimization, excelling in feature selection by leveraging Pareto Front
solutions to balance AUC and feature count, offering experts tailored options. Its
key strength lies in generating customized solutions, but it incurs high memory



Title Suppressed Due to Excessive Length 15

and time costs due to numerous DQN-based agents. Future work includes imple-
menting selective learning for indecisive agents to mitigate resource constraints,
applying the method to multiomics data in the ANR project RECORDS, encom-
passing metabolomic and transcriptomic datasets with up to 69,000 features, and
developing Pareto Front solutions for sepsis diagnosis, optimizing both accuracy
and biomarker count.
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