
HAL Id: hal-04954649
https://uvsq.hal.science/hal-04954649v1

Submitted on 18 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Autonomous Driving in CARLA: A Survey
Youssef Al Ozaibi, Manolo Dulva Hina, Amar Ramdane-Cherif

To cite this version:
Youssef Al Ozaibi, Manolo Dulva Hina, Amar Ramdane-Cherif. End-to-End Autonomous Driving
in CARLA: A Survey. IEEE Access, 2024, 12, pp.146866 - 146900. �10.1109/access.2024.3473611�.
�hal-04954649�

https://uvsq.hal.science/hal-04954649v1
https://hal.archives-ouvertes.fr

Received 20 September 2024, accepted 27 September 2024, date of publication 3 October 2024, date of current version 16 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3473611

End-to-End Autonomous Driving in
CARLA: A Survey
YOUSSEF AL OZAIBI 1,2, MANOLO DULVA HINA 1, (Member, IEEE),
AND AMAR RAMDANE-CHERIF 2
1ECE Paris School of Engineering, 75015 Paris, France
2LISV Laboratory, Université de Versailles Paris-Saclay, 78140 Vélizy-Villacoublay, France

Corresponding author: Youssef Al Ozaibi (yalozaibi@ece.fr)

This work was supported by the École centrale d’électronique (ECE) Paris Engineering School, Laboratoire d’Ingénierie des Systèmes de
Versailles (LISV), Université de Versailles—Paris-Saclay.

ABSTRACT Autonomous Driving (AD) has evolved significantly since its beginnings in the 1980s, with
continuous advancements driven by both industry and academia. Traditional AD systems break down the
driving task into smaller modules—such as perception, localization, planning, and control– and optimizes
them independently. In contrast, end-to-end models use neural networks to map sensory inputs directly to
vehicle controls, optimizing the entire driving process as a single task. Recent advancements in deep learning
have driven increased interest in end-to-end models, which is the central focus of this review. In this survey,
we discuss how CARLA-based state-of-the-art implementations address various issues encountered in end-
to-end autonomous driving through various model inputs, outputs, architectures, and training paradigms.
To provide a comprehensive overview, we additionally include a concise summary of these methods in a
single large table. Finally, we present evaluations and discussions of the methods, and suggest future avenues
to tackle current challenges faced by end-to-end models.

INDEX TERMS Autonomous driving, autonomous vehicles, end-to-end models, deep learning, motion
planning, CARLA.

I. INTRODUCTION
The first autonomous driving methods can be traced back to
the 1980s [1], [2], and over the years, the field has continued
evolving, attracting significant interest and research from
both industry and academia [3]. Autonomous Vehicles (AVs)
have the potential to address major issues such as road
congestion and traffic-related accidents [4], with the latter
being the leading cause of deaths for children and young
adults aged between 5-29 years according to theWorld Health
Organization [5].

Classical autonomous driving systems decompose the
autonomous driving task into smaller modules such as
perception, localization, planning, and control. The modules
are solved and optimized independently before being incor-
porated into the final autonomous driving system. On the
other hand, end-to-end models directly map sensory inputs to

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Chen .

the appropriate controls by optimizing the entire autonomous
driving process as a single task, often through neural networks
and deep learning. Recent advancements in deep learning
have also driven increased interest in end-to-end models, and
this approach is the central topic discussed in this survey.

Since safety is of the utmost importance for AV’s
commercial viability, AVs have to go through rigorous tests in
both real-world and simulation environments before deploy-
ment [6]. While real-world tests are the most straightforward
way to develop, verify, and validate AD systems, they can be
costly due to longmanual driving hours for dataset collection,
potential accidents, and vehicle and sensor costs. Therefore,
simulation environments emerge as a popular solution in AV
research [7] to alleviate those problems.

The CARLA (Car Learning to Act) simulator [8] is
a high-fidelity simulator with a flexible API, a high
potential for environment and agent customizability, and
a diverse range of sensor configurations. It is a popular
tool in end-to-end autonomous driving research due to its

146866

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0009-0000-2482-6606
https://orcid.org/0000-0001-8523-3986
https://orcid.org/0000-0001-8289-747X
https://orcid.org/0000-0003-0961-8758

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

simplicity in collecting data, training models, and evaluating
their performance using official and community-created
benchmarks.

In this paper, we choose to limit our review of end-to-
end autonomous driving models to those that have used
the CARLA simulator. This decision is mainly motivated
by two factors. First, we aim to compare a wide range
of methods within a common framework. CARLA, widely
adopted since its release in 2017, provides a substantial
body of literature, making it suitable for evaluating the
evolution of end-to-end driving over a significant period
of time. Second, since this survey focuses on end-to-
end driving, high-fidelity sensory data from one end, and
sufficiently accurate vehicle dynamics for control on the
other end, are essential components for a testing environment.
While benchmarks such as nuScenes [9], nuPlan open-
loop [10], and VISTA [11] provide photo-realistic sensory
data from real-world logs compared to CARLA’s rendered
environment, output commands do not alter the next input
state, or only affect it in limited capacity using novel
view synthesis. In terms of control and vehicle dynamics,
closed-loop benchmarks such as CommonRoad [12], nuPlan
closed-loop [10], WayMax [13], and Nocturne [14] can offer
more realistic traffic behavior using data-driven scenarios
from real-world logs, compared to CARLA’s model-driven
traffic behavior. However, these benchmarks use vector-
ized/abstracted inputs, making them more suited to mid-to-
end, rather than fully end-to-end, evaluations. In summary,
we focus on CARLA for this review because it satisfies both
the need for an extensive body of research and a closed-loop
system that provides high-fidelity sensory inputs, along with
decent vehicle dynamics and traffic behavior for end-to-end
evaluations. Additionally, we focus on goal-driven end-to-
end driving, i.e., when there is a pre-defined start-to-end route
to follow. We highlight the general weaknesses of end-to-
end models and demonstrate how implementations address
these weaknesses through various model inputs, outputs,
architectures, and training paradigms.

A. RELATED WORKS
Several related surveys review end-to-end driving, with the
differences mainly in the scope or area of focus.

Chib and Singh [15] give a global overview of end-to-
end autonomous driving, examining methodologies, sensory
inputs, model outputs, learning approaches, evaluations,
explainability, and safety aspects. Teng et al. [16] study
both classical pipeline motion planning as well as end-
to-end driving using Imitation Learning (IL), Reinforce-
ment Learning (RL), and confusion learning approaches.
Chen et al. [17] present the end-to-end driving history and
roadmap, methodologies, critical challenges faced, as well
as future trends. Coelho and Oliveira [18] review end-to-end
autonomous driving under the CARLA simulator, and pro-
vide comparisons based on two of its benchmarks (CoRL [8]
and NoCrash [19]). Kiran et al. [20] mainly review deep

reinforcement learning approaches for autonomous driving
and briefly explore other learning approaches. Hagedorn et al.
[21] review both motion planning and prediction (motion
forecasting of other vehicles), and the various architectures
used to incorporate both tasks. Yang et al. [22] review
the application of large language models for autonomous
driving.

B. CONTRIBUTIONS
This survey shares similarities with a few previous works.
We follow a structure that is similar to [15], where we dedi-
cate sections to each end-to-end model’s components, such as
inputs, outputs, and training. We focus on reviewing CARLA-
based autonomous driving state-of-the-art techniques, similar
to [18]. However, our review additionally covers recent up-
to-date methods, includes expert ‘‘privileged’’ autonomous
driving models used for data collection, and reviews more
benchmarks. The main contributions of this survey are as
follows:

• We focus on CARLA-based end-to-end autonomous
driving methods, reviewing their model inputs, outputs,
architectures, and training. To provide a global, compre-
hensive overview of the reviewed end-to-end methods,
we compile a detailed table describing their associated
inputs, architectures, outputs, training approaches, and
the benchmarks used.

• We explore both modular, rule-based, and end-to-end
learning-based expert autonomous driving models that
are used for data collection.

• We explore several CARLA benchmarks and present
evaluations from various papers.

• We highlight current weaknesses and suggest future
avenues that can be potentially worth exploring.

C. SURVEY STRUCTURE
The survey is divided into three main parts. The first
part serves as a preliminary overview. After giving a
general introduction of the survey in Section I, it provides
background information on autonomous driving, motion
planning, and end-to-end models in Section II, and describes
how such models are evaluated using benchmarks that are
presented in Section III. Section IV then highlights end-
to-end models’ weaknesses, concluding the first part and
setting the stage for part two, where these weaknesses are
addressed by various methods. Equipped with the relevant
background from part one, the second part forms the heart
of the survey and showcases CARLA end-to-end driving
methods by exploring model inputs in Section V, outputs
in Section VI, architectures in Section VII, and training in
Section VIII. Finally, the last part presents the evaluations and
discussions, challenges and future works, and the conclusion
in Sections IX, X, XI, respectively.

II. BACKGROUND
In this section, we provide a brief background on the concepts
and terms that will be used throughout this paper. We begin

VOLUME 12, 2024 146867

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

by presenting the autonomous driving motion planning
context, and afterwards explain how modular vs. end-to-end
autonomous driving systems differ when tackling this task.
The latter is further elaborated by explaining reinforcement
learning and imitation learning. Finally, we give a brief
overview of the CARLA simulator itself.

A. AUTONOMOUS DRIVING MOTION PLANNING
Planning in autonomous driving is primarily done in two
stages. First, a high-level path planner plans a route from a
starting point to a final destination. Afterwards, a low-level
motion planner generates trajectories to guide the vehicle
along the given high-level route (Fig. 1). This survey focuses
on methods addressing the latter; the high-level route is
typically given as part of the input.

In the context of autonomous driving, high-level path
planning, also called route planning, solves shortest path
problems in graph or node-like structures, using optimal
solution algorithms such as Dijkstra [23] and A* [24], among
other algorithms [25]. This involves finding the best roads
to follow in a city’s road network to arrive from a starting
location to a target destination as fast as possible, possibly
taking into account factors such as traffic congestion, speed
limits, road lanes, etc.

Low-level motion planners generate dynamically feasible
trajectories to follow the high-level route [26]. Compared
to high-level planners, the trajectories they generate are
much shorter and are constantly updated to react to the
continuously changing environment and surroundings [27].
Safety, obstacle avoidance, and traffic rules constraints
are necessary to generate valid routes for urban driving.
Passenger comfort and energy usage can also be included
in the set of constraints, although they are typically
not considered in CARLA implementations. This is due
to the fact that low-level motion planning has not yet
been solved with a 100% success rate at the time of
writing [28].

FIGURE 1. High-level planning (red) is responsible for planning a route
from start to finish based on a city network graph. Low-level planning is
responsible for generating local trajectories (blue) for the ego-vehicle
(green) in order to follow the high-level topological route while avoiding
obstacles and respecting traffic laws.

B. MODULAR VS END-TO-END AUTONOMOUS DRIVING
The low-level trajectories and output controls in autonomous
driving can either be generated by planning and control
modules that are part of a bigger modular pipeline, or they
can be generated in an end-to-endmanner using deep learning
models.

Modular pipelines [29] decompose autonomous driving
into multiple modules of perception, localization and map-
ping, planning and prediction, and finally, control (see Fig. 2,
top). The perception module takes raw sensory input and
processes it to understand the environment and the objects
in the scene. It is responsible for perceiving, detecting, and
tracking objects such as other vehicles, pedestrians, road
lanes, traffic signs, etc. This information is then passed to
the localization and mapping module to map the scene and
localize the ego-vehicle in it. The output is then passed on to
the planning and prediction module. It generates appropriate
trajectories based on the perceived environment and the
predicted motion of other actors in the scene. Finally, the
control module outputs the appropriate steering, throttle, and
break actions to follow the generated trajectory.

Under the modular pipeline, each module can be engi-
neered independently, allowing engineers to customize each
component separately without having to revamp the whole
system. This also has the added benefit of a simpler debug-
ging process during failure, and improved interpretability.
However, the disadvantages lie in the fact that developing
each component requires specialized expertise and consider-
able manual design and parameter tuning. In addition, since
the modules are optimized separately, errors in one module
can accumulate and propagate throughout the software stack,
which can lead to cascading failure.

End-to-end systems, on the other hand, are optimized as
a whole towards the final autonomous driving output (see
Fig. 2, bottom). They receive sensory inputs and output the
appropriate actions and/or trajectories using a neural network.
As a result, end-to-end models require less development
effort and specialized knowledge for each module. However,
their reliance on data can make them susceptible to failure
when encountering unseen scenarios. Compared to modular
pipelines, they are also harder to debug due to the black-box
nature of deep learning. The weaknesses of end-to-end
models are further detailed in Section IV.
End-to-end learning is split into two categories based

on the learning paradigm that is used to train the model.
Reinforcement Learning (RL) trains a model through direct
interactions with the environment and trial and error tech-
niques. Imitation Learning (IL), on the other hand, trains the
model under supervised learning using demonstrations from
a dataset.

C. REINFORCEMENT LEARNING
Reinforcement learning (RL) [30] is a machine learning
paradigm where an agent learns a policy by interacting with
an environment through trial and error. The formulation of

146868 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 2. Comparison between modular (top) and end-to-end architectures (bottom).

RL can be understood through the framework of a Markov
Decision Process (MDP), which is defined by a set of states
S, a set of actions A, a transition function P(s′|s, a) which
determines the probability of transitioning from state s to state
s′ given action a, and a reward function R(s, a) that assigns
rewards based on the state and action taken. The objective in
an MDP is to find a policy π (s), which maps states to actions,
that maximizes the expected cumulative reward. A policy π

is a strategy or a rule that the agent follows to choose actions
based on the current state. It can be deterministic, where a
specific action is chosen for each state, or stochastic, where
actions are chosen according to a probability distribution.

In RL, the cumulative reward is often referred to as the
return, denoted asGt , and is defined as the sum of discounted
rewards from time step t onwards. The discount factor γ (with
0 ≤ γ < 1) reduces the value of future rewards, making
rewards received at immediate time steps more valuable.
Additionally, it ensures the convergence of the infinite series
of future rewards, preventing the return from exploding to
infinity and thus keeping it finite.

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + · · · =

∞∑
k=0

γ kRt+k+1 (1)

The goal is to find an optimal policy π∗ that maximizes the
expected return E[Gt |st , at , π] for each state s and action a.
By iterating over different policies and updating them based
on observed returns, the agent learns to choose actions that
maximize the expected cumulative reward over time.

The challenge in RL is to design reward functions and
models that can effectively learn to produce desirable driving
behavior. For example, a positive reward can be given to the
agent for actions that lead to progress towards the destination,
maintaining a safe speed, or complying with traffic laws.

On the other hand, a negative reward can be assigned for
actions that result in traffic infractions, such as running a
red light, speeding, or causing a collision. By attempting to
maximize the expected reward, the RL model might learn to
drive in a manner that is both safe and efficient. However,
the explicit design of rewards does not always lead to the
expected behavior, as the agent may find unintended ways
to maximize rewards. Therefore, careful consideration and
refinement of reward functions are essential to ensure the
RL agent learns the desired behaviors and avoids exploiting
loopholes in the reward structure.

D. IMITATION LEARNING
Imitation Learning (IL), also sometimes called Learning from
Demonstrations (LfD), is a machine learning technique used
to teach an agent to learn to perform a task autonomously
by mimicking expert demonstrations, usually performed
by humans. Autonomous agents train under a supervised
learning setting to learn an appropriate behavioral policy
π , using a dataset of expert demonstrations D, which is
comprised of state-action pairs (s, a) generated by an expert
policy π∗. Demonstrations can follow a trajectory-based
representation [31] to account for the sequential nature
of some tasks, where a trajectory ζ is comprised of a
sequence of state action pairs that span over a horizon t ,
ζ = {(s0, a0), (s1, a1) . . . (st , at)}. In end-to-end IL applied
to AVs, states s typically correspond to sensor-readings,
such as images from RGB camera or point clouds from
LiDARs, and actions correspond to a trajectory composed
of future waypoints to follow, or direct steering angle and
brake/throttle values.

Imitation learning can be broken down into two categories,
Behavior Cloning (BC) or Inverse Reinforcement Learning

VOLUME 12, 2024 146869

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

(IRL). Learning a behavioral policy using BC boils down to
learning a direct mapping between states to actions by train-
ing on the demonstration dataset D. On the other hand, IRL
attempts to understand what motivates an expert to exhibit
the demonstrated behaviors by learning an underlying reward
function that is maximized under expert demonstrations. Both
types of IL are further explained below.

1) BEHAVIOR CLONING
Behavior cloning algorithms learn a policy π that minimizes
the error when mapping from the features to the labels
of D. Under the state-action representation, this equates to
minimizing the loss between the predicted action given a state
πθ (s) and the ground-truth action a in D.

argmin
θ

ED∼(s,a)[L(πθ (s), a)] (2)

2) INVERSE REINFORCEMENT LEARNING
Inverse Reinforcement Learning (IRL) algorithms learn
to derive a reward function R∗ from observed expert
demonstrations that makes the expert’s behavior π∗ appear
optimal [32].

Inferring the reward function can be done in several
ways. Maximum margin methods [33] find a reward function
that maximizes the margin between the reward obtained
from the demonstrated expert policy and other policies.
Maximum causal entropy methods [34] employ a proba-
bilistic approach to find a reward distribution with maximal
entropy. This approach can handle ambiguities when learning
from situations where multiple decisions lead to similar
outcomes. Bymaximizing entropy, thesemethods reduce bias
towards any specific policy and maintain a more balanced
and generalized reward distribution. Generative Adversarial
Imitation Learning (GAIL) [35] methods employ adversarial
techniques to generate a policy that is indistinguishable from
the expert policy. GAIL follows the Generative Adversarial
Networks (GAN) formulation [36], where two networks—
a generator and a discriminator–are trained simultaneously
with adversarial techniques. The generator attempts to create
policies that are indistinguishable from expert policies,
and the discriminator attempts to learn how to distin-
guish between them. Therefore in the case of GAIL, the
‘‘learned reward’’ is how well generated policy can fool the
discriminator.

E. THE CARLA SIMULATOR
CARLA [8] is a high-fidelity simulator with a flexible API
that allows modification and access to various autonomous
driving-related factors. It can modify weather and light-
ing conditions, generate maps, simulate actors such as
pedestrians, vehicles, and traffic lights, and create custom
driving scenarios. It also offers a scalable multi-client server
architecture which can accelerate deep learning and dataset
collection through parallelization.Most importantly, CARLA
can simulate various sensor data as well as vehicle dynamics
based on steering and throttle/brake inputs.

CARLA offers 12 publicly available pre-built maps, called
Towns, featuring different road types and environments
for training and testing. This is particularly useful for
evaluations and benchmarks, where identical conditions need
to be established for fair comparisons. Several benchmarks,
whether official or community-created, have been made
publicly available for use to evaluate end-to-end methods.
We explore the CARLA towns and benchmarks inmore detail
in Section III.
Since the ground-truth environment and agent states can

be accessed at will using the CARLA API, a distinction
has to be stated between ‘‘privileged’’ and ‘‘sensorimotor’’
models to avoid confusion. Privileged autonomous driving
models operate under a perfect perception assumption and
have access to ground-truth states such as other vehicles
locations, lane boundaries, traffic light states, etc. This allows
implementations to focus solely on solving how to act,
without having to tackle solving how to see. On the other
hand, sensorimotor models can only sense the environment
through sensor readings, and are tasked to solve both seeing
and acting. Sensorimotor models are thus considered to
be closely related to real and physical autonomous driving
experiments since they do not have access to the ground truth.
In fact, a few sensorimotor models in CARLA [37], [38],
[39], [40], [41], [42], [43] have also been evaluated using
real sensory data in nuScenes’ [9] open-loop tests or using
closed-loop tests in real-world environments by deploying
miniature cars [44], [45].

III. BENCHMARKS
Benchmarks refer to evaluation protocols that allow different
driving methods to be compared on a common ground.
Over the years, several CARLA benchmarks, both official
and community-created, have been established to evaluate
autonomous driving methods’ performance. The benchmarks
expose driving models to a wide variety of towns (Table 1),1

routes, weather and daylight conditions, as well as scenarios
to evaluate their generalization capacity. In this section,
we explore several benchmarks that evaluate urban driving
methods’ performance in navigating from a start to an end
location. We also briefly cover benchmarks that assess more
specific aspects of urban driving, such as occlusion scenarios.

A. EARLY BENCHMARKS
1) CORL
The first official benchmark was established alongside
CARLA’s release paper [8], and it is commonly called CoRL
in the literature, following the name of the conference where
the paper was published. It evaluates driving agents on a set
of four increasingly difficult goal-directed navigation driving
tasks, where the goal is to drive from point A to point B given
a high-level topological route in a town. The first task is to
drive on a straight route with no other dynamic agents, and

1Information regarding CARLA towns has been obtained from the
publicly online documentation https://carla.readthedocs.io/en/latest/

146870 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 1. CARLA towns.

the second adds one turn to the route. The third task involves
driving on a route that can have any starting and end point
in the town, meaning that the driving agent can encounter
multiple turns and intersections. The fourth task additionally
incorporates pedestrians and cars as dynamic obstacles to
the route. Methods are evaluated by measuring the success
rate of multiple episodes, where an episode is considered
successful if an agent completes a route within a defined
time limit. Speed limits and traffic lights can be violated, and
such infractions are not taken into account during evaluation.
Town01 is used for training, while Town02 is used for tests.
In addition, the weather and daylight conditions used are
different for the training and testing phases.

2) NOCRASH
The NoCrash benchmark [19] builds upon CoRL’s Naviga-
tion tasks (third and fourth tasks) with similar routes (Fig. 3)
and three degrees of traffic densities. Contrary to CoRL,
NoCrash considers episodes with a collision above a certain
magnitude as unsuccessful. They similarly use Town01 for
training and Town 02 for testing.

3) ANYWEATHER
The AnyWeather benchmark [46] follows the CoRL bench-
mark but with an increased amount of testing weather and

daylight conditions to further examine the generalization
capability of autonomous driving methods.

4) TRAFFIC-SCHOOL
The traffic-school benchmark [47] builds upon NoCrash
but only considers routes with no overtime, no crashes,
no traffic light violations, and no lane deviation infractions
as successful.

FIGURE 3. Town02 start (red) and goal (green) locations of routes for the
NoCrash benchmark [19].

B. LEADERBOARDV1
As end-to-end driving methods have developed and become
more advanced, the original official benchmark, CoRL,
has been nearly solved [48], [49]. The leaderboardv1 [28]
was later introduced as the next official benchmark, and
it evaluates urban driving agents on a set of longer, more
complex routes that include challenging scenarios. The
offline leaderboardv1 offers 76 publicly available pre-defined
routes, split into 50 for training, and 26 for testing. Training
routes are done using Towns 01, 03, 04, and 06, whereas
testing is done using Towns 02, 04, and 05. A hidden set
of routes based on Towns 08 and 09 are used for online
server-side evaluations that are inaccessible to users to ensure
fair tests. The hidden routes are based on 10 routes, with tests
done on two conditions, and with five repetitions. This results
in a total of 10 × 2 × 5 = 100 routes.
There are 10 possible traffic scenarios that can be

encountered in leaderboard v1 routes, and driving agents
have to cope safely with the encounters without crashing.
Those scenarios have been chosen from the NHTSA
(National Highway Traffic Safety Administration) pre-crash
typology [50], which is a report that consists of a database
of several police-reported pre-crash scenarios involving at
least one vehicle. The scenarios depict vehicle movements
and dynamics, and are translated in CARLA by using the

VOLUME 12, 2024 146871

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 2. Leaderboard v1 scenarios.

simulator to implement events such as spawning vehicles,
suddenly emerging pedestrians, or loss of control by adding
noise to steering control. The list of leaderboard v1 traffic
scenarios is shown in Table 2 for reference, since the traffic
scenarios found on the leaderboard site at the time of writing
depict the newer version’s scenarios (leaderboardv2).

Leaderboard and leaderboard-inspired benchmarks mainly
use the Driving Score (DS) metric to evaluate their agents’
driving performance for a given route i, with 100% (or 1)
being the highest possible score, and 0 the lowest.
Driving Score:TheDriving Score (DS)metric is calculated

using the product of the Route Completion (RC) and
Infraction Penalty (IP) metrics.

DSi = RCi · IPi (3)

Route Completion: For a given route, the Route Comple-
tion (RC) metric is calculated by taking the percentage of
the distance completed by the agent. A run in a route can
end prematurely before completion if the agent deviates from
the assigned route significantly, is blocked and does not take
actions for a while, or takes too long to finish the route.
Infraction Penalty: The Infraction Penalty (IP) metric

keeps track of how many infractions are committed along a
given route i, starting with a value of 1 (100%), and decreas-
ing each time an infraction is committed by multiplying

with the infraction’s weighting factor. Different types of
infractions have different weighting factors, summarized in
Table 3. For example, if an agent runs a red light (0.7) and
also collides with a pedestrian (0.5), the infraction penalty
amounts to 1 · 0.7 · 0.5 = 0.35 for the route being evaluated.
Thus, for a given route, the IP is calculated as the product of
all infraction instances committed for each type of infraction.

IPi =

ped., . . . , stopj∏
j

(pj)#infractionsj (4)

Finally, to obtain the final driving score DS over an entire
benchmark, the driving scores DSi for each route i in N total
routes are simply averaged.

DS =
1
N

N∑
i=0

DSi =
1
N

N∑
i=0

RCi · IPi (5)

The evaluations are done either under sensor or map tracks,
the latter of which allows the possibility of using an HDMap
in addition to sensors.

TABLE 3. Infraction penalty coefficients. Infractions marked with ‘‘∗’’ are
only applicable for leaderboardv2 evaluations.

C. LEADERBOARDV1 VARIANTS
Since leaderboard evaluations are done server-side on a set
of routes that are hidden from submitting users, conducting
ablation studies or simply visualizing the ego-vehicle for
qualitative evaluation is not possible. As a result, multiple
‘‘leaderboard-inspired’’ benchmarks were created using the
same metrics in order to circumvent the inaccessibility
problem.

1) LAV
The LAV benchmark [51] uses four towns for training (Towns
01,03,04, and 06) and two unseen towns for evaluation
(Towns 02 and 05). Four routes are used for evaluations, two
from each town. The routes are evaluated under four different
weathers, and each route is run three times to calculate
mean and standard deviation values. Therefore, the LAV

146872 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

benchmark uses 4 (routes) * 4 (weather) * 3 runs = 48 runs
to evaluate driving models.

2) NEAT
The NEAT benchmark [52] uses eight towns for training
(Towns 01-07 and 10) and six towns for evaluations (Towns
01-06). Each town has two unique routes, with the exception
of towns 03 and 04, which contain three unique routes. This
totals to 14 unique routes (4 towns * 2 + 2 towns * 3). Each
unique route is repeated three times, but with new daylight
and weather conditions, totalling 42 runs and 42 different
daylight and weather combinations. In addition, the NEAT
benchmark’s routes explicitly incorporate more turns when
compared to the leaderboard routes to tackle the heavy bias
for straight driving.

3) TOWN05
The Town05 benchmark [53] uses seven towns for training
(Towns 01-07, and 10), and reserves Town05 for evalua-
tion. The benchmark has two evaluation modes. Town05
Short contains short routes of 100-500m comprising three
intersections each. Town05 Long 10 contains long routes
of 1000-2000m comprising 10 intersections each. The same
weather condition is used for tests.

4) LONGEST6
The Longest6 benchmark [54] also uses the same 8 towns for
training (Towns 01-07, and 10) and 6 towns for evaluations
(Towns 01-06). Among leaderboardv1’s 76 routes, only
the six longest routes per town are used for evaluation.
This results in 36 routes (six routes for six towns), with
each containing a unique daylight and weather combination
similar to the NEAT benchmark. The Longest6 benchmark
additionally ensures a higher density of dynamic agents when
compared with leaderboardv1.

D. LEADERBOARDV2
Leaderboardv2 extends its predecessor with longer routes
and more complex scenarios. As explained by Li et al.
[55], leaderboardv1 scenarios can be handled with simple
skills such as lane following, adherence to traffic signs,
and collision avoidance. However, leaderboardv2 scenarios
require much more advanced behavior due to their complex-
ity. For example, an incoming vehicle can invade the ego
vehicle’s lane and the ego vehicle is required to sidestep
and avoid collision. Another example scenario involves
yielding andmaking way to an emergency vehicle. Compared
to leaderboardv1’s routes, which average roughly 1km in
length, leaderboardv2’s routes can extend up to 10km. The
offline leaderboardv2 offers 90 training routes and 20 testing
routes, based on Towns 12 and 13 respectively. The online
server-side hidden routes are evaluated in Town14.

E. SCENARIO-SPECIFIC BENCHMARKS
A few benchmarks have been developed to evaluate methods
on individual scenarios. The Driving in Occlusion Simulation
benchmark (DOS) [56] evaluates driving agents in four

occlusion scenarios. The CornerCaseRepository [55] tests
driving agents under all 39 scenarios from leaderboardv2.
However, contrary to the leaderboard routes, each route
contains only one scenario to evaluate driving performance
on each specific scenario. The Bench2Drive benchmark [57]
similarly tests driving models to handle 44 different
individual scenarios.

IV. END-TO-END MODELS’ WEAKNESSES
A straightforward implementation of an end-to-end driving
model maps raw image input pixels to output steering
commands [2], [58], [59]. As shown in Fig. 4, during the
training phase, the model 1) receives an input image from the
dataset, 2) predicts the output steering, throttle, and brake,
and calculates the loss with respect to the ground truth, and
3) updates its weights through backpropagation. During the
testing phase, the model simply receives an image input
and predicts the corresponding output controls. While such
approaches can yield decent results for basic tasks such as
lane keeping, they struggle to handle more complex situations
that commonly arise during urban driving due to several
weaknesses.

FIGURE 4. An example of an end-to-end model inspired by Bojarski et al.
[59]. It takes image inputs and outputs steering, throttle, and brake
values.

A. WEAKNESSES OF END-TO-END MODELS
1) DISTRIBUTION SHIFT
End-to-end models are purely data-driven and heavily
influenced by the data seen during training. While they
can infer appropriate actions in situations that are similar
to what they have previously experienced, they can fail
dramatically when encountering entirely new scenarios. This
phenomenon, known as the distribution shift, occurs when
there is a difference between the distributions of data
encountered during training and testing. Consider an end-
to-end model driving on a lane in ideal starting conditions:
it is perfectly centered and aligned with the lane. As it
begins to drive, it produces tiny errors, since neural networks
are inherently statistical and not perfectly accurate. Over
time, these errors accumulate, causing the vehicle to drift off
the lane. Since the training data was collected mostly from
perfect human demonstrations, there is no data that the model
has seen that shows how to recover from such errors. As a
result, the model fails to correct itself and veers off the lane.

VOLUME 12, 2024 146873

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

2) LONG-TAILED DISTRIBUTION
A significant issue related to the distribution shift in
autonomous driving is the long-tailed nature of the data
distribution.Most training data predominantly feature routine
and straightforward driving scenarios, such as driving straight
or following a lane, because these actions are the most
common in everyday driving. In contrast, safety-critical
situations are far less common but are crucial for ensuring
the safety and reliability of autonomous vehicles. Examples
of these scenarios can include a car suddenly running a
traffic light, a pedestrian unexpectedly crossing the street,
or the sudden appearance of an animal like a deer. Such
incidents require immediate and appropriate responses to
avoid accidents. However, due to their rarity, these events are
underrepresented or not seen at all in the datasets used for
training autonomous driving models. This imbalance results
in end-to-end models that can handle routine tasks efficiently,
but may struggle or fail to act appropriately in safety-critical
situations.

3) CAUSAL CONFUSION
Causal confusion [60] occurs in end-to-endmodels when they
learn to associate irrelevant features with driving actions due
to unintended correlations found in the training data. For
example, a model might learn to stop at a traffic light because
it correlates stopping with the presence of other stationary
vehicles in its vicinity, rather than with the traffic light status
itself. This happens because the vehicles generally occupy
a much larger portion of the input image pixels compared
to the traffic light. If those vehicles are absent in a similar
future scenario, the model might fail to stop, leading to unsafe
driving behavior.

4) INTERPRETABILITY
Interpretability is an essential component not only for end-
to-end autonomous driving, but also for the deep learning
community as a whole. Understanding the reasoning behind a
model’s output is essential for both debugging purposes and
building trust in the system. It is challenging to understand
why a car might output a specific steering command at a given
moment. Without understanding the underlying decision-
making process, it is difficult to determine the short-term
maneuver the vehicle is attempting to execute from just
the image-action pair at the observed moment. This lack of
transparency makes it harder to diagnose issues and ensure
the model’s actions are safe and reliable.

B. SOLUTIONS
Several solutions have been proposed to address the various
shortcomings of end-to-end autonomous driving models,
not limited to the aforementioned issues but also including
others that will be discussed in the following sections. These
sections explain how CARLA-based implementations tackle
these challenges through various end-to-end model inputs,
outputs, architectures, and training practices. An overview is
provided in Table 6.

V. MODEL INPUTS
As previously mentioned, a simple input structure for an end-
to-end model involves using raw sensor data only, such as
pixels from an image frame. The pixels are processed and
encoded using fully connected layers [2] or convolutional
layers [59]. Recent end-to-end models incorporate additional
inputs to enhance the model’s driving and comprehension of
its surroundings. Such inputs may include additional sensors
(e.g., LiDAR), goal conditioning, or sequences of past values
(e.g., sequence of past images). This section aims to explain
the various types of inputs that were adopted by state-of-the-
art models and how they are processed.

A. PERCEPTION SENSORS AND ENCODERS
1) CAMERAS
The camera is themost commonly used sensor in autonomous
driving due to its ability to capture rich contextual informa-
tion of the scene by perceiving the colors, shapes, and textures
of objects in its surroundings. Without cameras, information
such as traffic light states, road signs, and lane markings
would be challenging to interpret accurately, making them
crucial for comprehensive scene understanding.

Most CARLA implementations encode their input images
using Convolutional Neural Networks (CNNs) to extract
relevant features (see Table 6), although recent methods
began to adopt Vision Transformers (ViTs) [37], [38], [39]
or Visual Language Models (VLMs) [61], [62] encoders
instead. ViTs [63] encoders use transformer architectures
(see Section VII-B) to treat input image patches as tokens,
whereas VLMs encoders [64], [65] leverage internet-scale
image-text pairs to learn rich multimodal representations,
similar to how large language models exploit vast amounts
of textual data.

End-to-end models either directly use the raw pixel data
as input to an encoder to extract relevant features, or pre-
process them beforehand. Pre-processing raw pixels can
potentially simplify end-to-end training by removing noise or
driving irrelevant information inputs. Reinforcement learning
end-to-end models pre-process their input by pre-training a
visual encoder using supervised learning to learn how to
abstract the scene before beginning the RL phase for motion
planning [49], [66], [67], [68]. Scene abstraction can also be
done through semantic segmentation. By pre-training a visual
encoder for semantic segmentation, the resulting segmented
pixels can be used by the end-to-end driving model, with a
more informative input for the training process [44], [69],
[70]. Another option involves using object instances as inputs
instead of dense pixel representations [71], [72]. Object
instances can represent objects such as other vehicles, and
can contain details such as their position and orientation with
respect to the ego-vehicle.

2) LIDARS
LiDAR (Light Detection and Ranging) sensors generate
3D point clouds by emitting laser pulses and measuring

146874 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

the time of flight and the angle of the reflected pulses
from the perceived objects. They are adopted as inputs
by several models, usually alongside cameras, to boost
spatial comprehension through accurate depth and ranging
values. Some methods use LiDARs only without cameras
as input [43], [73], and work under the assumption that
information such as traffic light states is known.

LiDAR 3D point clouds are often processed before being
input to end-to-end models to reduce their dimension,
ensuring that the data is more manageable and only
driving-relevant point clouds remain. A popular technique
involves discretizing and projecting the 3D point cloud
into a 2D Bird’s Eye View (BEV) space using heuristic
techniques [53], [54], [73], [74], [75], [76], [77]. Points
on and above ground level are discretized into a 2-bin
histogram, and only points within an arbitrary range around
the ego-vehicle are conserved and divided into cells to
obtain a 2D BEV grid with fixed resolution. For example,
assuming the grid’s resolution is arbitrarily set to 256 ×

256, this technique ‘‘results in a two-channel pseudo-image
with 256 × 256 pixels’’ [53], i.e. of dimension R256×256×2.
An alternative to heuristic techniques is using learning-based
LiDAR encoders. The authors of [78], [79] use the SECOND
(Sparsely Embedded Convolutional Detection) backbone
encoder [80] to extract feature maps from point clouds
discretized into voxels with VoxelNet [81] using sparse
3D-convolutions. References [56], [82] use PointPillars [83]
to organize the point clouds into vertical ‘‘pillars’’ and encode
them into 2D BEV space with simplified PointNets [84].

3) SENSOR FUSION
Sensor fusion integrates data from multiple sensors to allow
end-to-end models to process multimodal input data under a
more unified and coherent structure. Some implementations
employ early fusion, where sensor fusion is implemented
as a preliminary step, and afterwards use the fused sensory
data as input to end-to-end models. Rosero et al. [85], [86]
generate an image-based point cloud using a binocular setup
and stereo-matching [87], and afterwards project it into BEV
space and stack them with 2D projected LiDARs along the
channel dimension. [51], [82] use image CenterPoint [88]
and LiDAR PointPillars [83] perception backbones and fuse
them using PointPainting [89] as a pre-trained perception
module. Jia et al. [78] combine multi-camera inputs using the
LSS (Lift, Splat, Shoot) approach [90] to transform multi-
2D images into BEV space. They fuse the output with the
encoded LiDAR using simple concatenation.

Other methods employ sensor fusion as part of the end-
to-end model’s learning process through middle fusion.
Reference [53], [54], [75], [76], [91], [92] use transformer
modules to combine intermediate features at multiple res-
olutions from multimodal input encoders to achieve sensor
fusion. Reference [37], [52], [77], [93] perform sensor fusion
by using transformers to process sensors after they have
been fully encoded by feature extractors. Hu et al. [42] fuse

images from a four-camera setup using a perception module
that leverages past ego motion and sensory inputs to achieve
spatio-temporal fusion. Xiao et al. [94] explore both early and
middle fusion schemes for RGB and depth channel images.

B. GOAL CONDITIONING
When a car arrives at an intersection, it is presented with
multiple equally viable choices: it can either turn left, right,
or continue straight. This ambiguity is usually eliminated
by the driver’s intention, assuming a final destination point
exists. However, the simple end-to-end examplemodel shown
earlier in Fig. 4 has no means to determine driving intentions
through image pixels alone. During training, a different
maneuver and action demonstration can exist for the exact
same intersection input state (steering left or right can happen
at the same intersection), causing the model to struggle to
learn the correct action to take. As a result, goal conditioning
is essential to eliminate the decision ambiguity. This is mainly
done using High-level Commands (HLCs) and/or Target
Points (TPs) in the literature.

FIGURE 5. The Conditional Imitation Learning (CIL) [45] network
architecture. It concatenates CNN-encoded features with measurement
features and implements a high-level command switch afterwards. When
a car is at the intersection, the decision ambiguity is eliminated by the
given HLC (‘‘go left’’ in this case).

1) HIGH-LEVEL COMMANDS
High-level commands indicate the high-level intention (fol-
low lane or left, right, straight at intersection) for every
input image frame. Codevilla et al. incorporate a switch
mechanism that is conditioned based on the HLC input, and
the switch is responsible for activating the corresponding
dedicated sub-module (see Fig. 5). During training, each sub-
module’sMultilayer Perceptrons (MLPs) network parameters
are trained separately based on the HLC, and thus become
specialized in outputting the appropriate action based on the
desired maneuver.

Earlier works mainly use 4 HLC outputs, which are
go straight, left, or right at intersections, and follow lane.
Later, the release of the official CARLA leaderboard [28]
introduced left and right lane changes as additional HLCs.

2) TARGET POINTS
Target Points (TPs) are sparse, noisy GPS signals provided
by a high-level global planner that are sampled every
50-100 meters to indicate the desired path. Various methods
that adopted the TP input saw a significant boost to the
driving performance. This was later shown to be due to a

VOLUME 12, 2024 146875

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

hidden bias in imitation learning models that exploits the rich
geometric information provided by GPS signals, as explained
by Jaeger et al. [92].With the usage of TPs, imitation learning
models gain the ability to periodically eliminate the accumu-
lated errors caused by the distribution shift by correcting drift
as they move towards each sparse GPS target point (Fig. 6).

FIGURE 6. End-to-end methods can correct drift by extrapolating their
output towards target points’ GPS locations. Image from [92].

Since GPS values provided by the leaderboard’s TPs
are noisy [54], filtering techniques have been adopted by
some implementations to ensure that the GPS input is
reliable. Chitta et al. [54] use a model-based denoising
algorithm based on the kinematic bicycle model [95] and
Monte Carlo estimates. Jaeger et al. [92] use an unscented
Kalman filter [96] with Van der Merwe’s scaled sigma point
algorithm [97].

C. OTHER INPUTS
1) LANGUAGE
Multimodal Large Language Models (MLLMs) extend
traditional LLMs with the ability to process and analyze
various types of information beyond text only, such as image
or audio [98]. These models demonstrate promising results
in performing complex reasoning tasks that span multiple
modalities and have seen significant interest across various
domains, and autonomous driving is no exception [99].
MLLMs applied for autonomous driving have the potential
to improve reasoning and facilitate interaction with driving
models through language. They can perform more complex
maneuvers using language instructions instead of relying
only on goal conditioning inputs such as HLCs and TPs,
as demonstrated by Wang et al.’s DriveMLM [39] CARLA
implementation (see Fig. 7).
Shao et al. [100] similarly use navigation language

instructions and human notice instructions as input to their
end-to-end model. Mei et al. [62] utilize descriptions of
critical objects using a VLM encoder as input to their model
to improve understanding of the scene.

2) VEHICLE STATE AND DYNAMICS
A commonly used input for end-to-end models is ego-vehicle
state measurements, most notably speed (see Table 6).
Other possible state measurement inputs include the current
steering angle [49], [101], [102], steering angles generated
by a pure pursuit algorithm [70], or previous actions [67].

Chen et al. [72] use an offline trajectory tree composed of
Euler spirals as an input. This additional input ensures that
generated trajectories are kinematically feasible.

3) HD MAPS
HD Maps in CARLA are represented using OpenDRIVE
files, which define road networks through detailed geometric
descriptions, including lines, arcs and spirals to model
road curvature. These files also include precise lane data,
providing information such as lane width, boundaries,
markings, and types. Additionally, OpenDRIVE files include
information on nodes and junctions for connecting roads,
as well as traffic signs and signals, to model intersection and
traffic behavior in detail.

While HD-maps have been used almost exclusively
by modular implementations in CARLA, Zhang et al.
[75] have incorporated them as input in their end-to-end
implementation alongisde camera, LiDAR, and radar inputs.
They experiment with two different HD-map representations,
where OpenDRIVE files are either rasterized as an image
from a BEV perspective and encoded using a CNN,
or vectorized and encoded using VectorNet [103].

D. SEQUENTIAL INPUTS
Incorporating sequential inputs to end-to-end models, such as
past image frames, adds an additional temporal dimension to
the system. The positive impact of historical input to end-to-
end models has been inspected through ablation studies by a
few implementations [42], [49], [56], [78], [104], although its
impact varies from marginal to significant from one method
to the other. On the other hand, some methods intentionally
avoid using historical input [52], [54] due to the copycat
problem [105], [106], and resort to using sensor inputs
from the current timestep only. The copycat problem [105]
falls under causal confusion, where end-to-end models with
historical input learn a shortcut during training where expert
actions are strongly correlated over time. This problem,
also referred to as the inertia problem [19], causes the
autonomous vehicle to struggle to restart movement after
coming to a full stop. This occurs because the training
dataset typically exhibits a high probability that the vehicle
remains stopped once it has stopped, such as when it
halts in front of a red light. In such demonstrations, there
might be only one pair of consecutive frames showing
the vehicle moving after stopping, whereas the majority
of frames depict the vehicle continuing to stop after
stopping.

VI. MODEL OUTPUTS
After sensory inputs are processed and encoded, the primary
objective of end-to-end models is to decode appropriate
steering and throttle/brake values for each time step. While
directly outputting control actions is possible, alternative
techniques have been proposed to improve the quality, safety,
and interpretability of end-to-end outputs.

146876 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 7. The DriveMLM architecture [39]. The model receives inputs from 4 camera images, LiDAR point clouds, systems messages, and user
instructions to output decision states and explanations. System messages refer to text data that contain a description of the driving state and tasks.

A. DIRECT STEERING AND THROTTLE / BRAKE
The simplest form of end-to-endmodels’ outputs is to directly
output steering and throttle/brake controls. Models learn
to map observations to three outputs of steering, throttle,
and brake values at every time step. The output values
are generally continuous and bounded between [−1, 1] for
steering, indicating left or right, and range from [0,1] for both
throttle and brake values.

Imitation learning models learn to map observations to
direct controls by minimizing the error, i.e., loss, between
the predicted and ground truth controls given by a dataset.
Several implementations use a mean squared error loss
(L2 loss) [45], [67], [70], [107], [108], while others opt for
an L1 loss [19], [47], [69], [79], [94], [109], [110], [111].
Deterministic hard targets such as L1 and L2 distances can
fail to capture the underlying probabilistic, stochastic nature
of complex environments [112], [113]. Therefore, a few
implementations consider probabilistic information during
training. Ohn-Bar et al. [46] train a mixture of experts
model with Gaussian distributions to output steering and
acceleration using a negative log-likelihood loss. Zhang et al.
[114] use soft probabilistic targets with a Kullback-Leibler
(KL) divergence loss during training, which enhances super-
vision with denser information by encouraging the model to
learn a distribution of actions for a given state [115]. The
supervision is provided by a reinforcement learning coach
(Roach) [114], and is leveraged by the authors of [116] and
[117] to implement a similar supervision loss. Hu et al. [118]
also employ a KL divergence loss during training to model
world dynamics and predict future actions and states.

Since direct control outputs for the current time-step only
can be short-sighted, some implementations design their
models to output future sequences of actions instead [109],
[110], [116], [117]. This encourages models to implicitly
learn to consider future actions when making decisions at the
current time-step.

B. WAYPOINTS
Waypoint outputs indicate future discrete locations the
ego-vehicle must reach over a short future time horizon,
and are usually updated over every time-step. Low-level
controllers then track the given waypoints to obtain the
appropriate steering and throttle/brake controls. Waypoint
outputs are more interpretable than direct control since they
can be directly visualized in BEV or image space and show
the intended actions of an end-to-end model over the near
future when it executes its actions (Fig. 8). Once end-to-
end models encode sensory input using a feature extractor,
waypoints can be decoded using several techniques (Table 4).

FIGURE 8. An example image from Azam and Kyrki [117] demonstrates
how waypoint representations are interpretable and can be viewed in
BEV space.

Auto-regression is the most common decoder architec-
ture (Table 6) and is typically implemented using Gated
Recurrent Unit (GRU) networks [119]. Instead of relying

VOLUME 12, 2024 146877

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 4. Waypoint generation techniques.

solely on encoded visual features and TPs as inputs to the
waypoint decoders, some implementations provide additional
contextual information to further refine the waypoint outputs.
Chen and Krähenbühl [51] use a two-stage motion planner
to first output multiple coarse waypoint predictions of all
vehicles in the scene, and afterwards refine the ego-vehicle
prediction iteratively during both training and testing using
another GRU network. Their viewpoint-invariant perception
representations allow their model to learn motion planning
from both ego and other vehicles’ trajectories. Fu et al.
[82] also consider trajectories of all agents in the scene,
and refine the ego-vehicle generated waypoints through
a refinement module based on another GRU network.
Hu et al. [42] use past and predicted future cost maps
and traffic light predictions to refine a sampled trajec-
tory auto-regressively. Jia et al. [78] use a coarse-to-fine
look-predict-refine strategy and an enlarged decoder archi-
tecture for waypoint generation. The look module checks if
the initial coarse waypoint trajectory prediction contains no
collisions or traffic violations, the predict module anticipates
how surrounding agents might react to the initial coarse
trajectory, and finally, the refinement module refines the
coarse trajectory based on the look and predict modules
output features. Shao et al. [56] use a consistency loss during
training based on potential intersections between predicted
waypoints and an occupancy map to reduce waypoints that
are likely to incur collisions. Chen et al. [72] use an offline
trajectory tree and motion forecasting of other agents to
ensure their waypoints output is safe and kinematically
feasible. Wu et al. [116] use an additional temporal module
with aGRUnetwork to implement trajectory-guided attention
to improve control predictions and fuse them with waypoint
trajectory outputs. Azam and Kyrki [117] similarly refine

waypoint outputs by combining them with direct controls
through a learned situation-aware fusion network and the self-
attention mechanism.

Since waypoints only contain positional information,
a controller is necessary to produce control outputs and
actuate the ego-vehicle. The control signal depends on the
error calculated between the current ego-vehicle state and the
defined reference target. The manner in which the reference
target and errors are defined with respect to the waypoints
vary slightly across implementations, however they generally
follow the same priniciples. Longitudinal reference targets
are defined by assuming waypoints are equally spaced in
time [48], and lateral reference targets are defined by aiming
towards a generatedwaypoint (Fig. 9). Disentangling velocity
from waypoints output by predicting speed separately can
lead to better results [37], [61], [92]. In this setup, waypoints
are spaced equally in distance rather than time, and are
responsible for defining lateral reference targets, whereas
longitudinal targets can be calculated using linear program-
ming [93], learned time-spaced waypoints [61], or learned
target speeds [37], [92], [104].

Proportional – Integral – Derivative (PID) controllers [120]
are the most common among waypoint-based end-to-end
models, and are used for both lateral (steering) and longi-
tudinal (throttle/brake) control. Rosero et al. [85], [86] use
PIDs exclusively for longitudinal control, and use model
predictive control (MPC) [121] instead for lateral control. The
authors of [51], [56], [82], and [93] additionally incorporate
rule-based safety heuristics for their controllers to perform
emergency brakes in case of forecasted collisions. The
authors of [78], [116], and [117] learn to predict direct control
outputs alongside the waypoints instead of relying solely on
rule-based reference targets for actuation.

146878 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 9. The heading error for lateral steering control can be calculated
by measuring the angle between the vehicle’s heading and an
intermediate waypoint target.

C. AUXILIARY TASKS
The trajectory / direct control action outputs of end-to-end
driving models are much sparser and lower in dimension
when compared to the dense pixel or point-cloud inputs
that they receive. Supervising only those outputs during
training can cause causal confusion and make models
struggle to generalize. Consequently, many works have
incorporated auxiliary output tasks as additional prediction
targets alongside motion planning, thereby augmenting the
density of the supervision signal.

1) EGO-VEHICLE SPEED
Ego-vehicle speed as an auxiliary task was first used by [107],
although they only briefly elaborate on the motivation behind
its usage. A more formal study on this task was done
by [19], where they identified the inertia causal confusion
problem and performed ablation studies to demonstrate
the utility of speed prediction. Adding a speed prediction
auxiliary task encourages the perception backbone to predict
speed-related features, and helps build a more robust
association between visual cues and the output velocity that is
needed.

2) IMAGE DEPTH
Estimating the depth of the scene using an image involves pre-
dicting the depth of each pixel, and models that employ this
auxiliary task can consequently have more information about
the spatial structure of the scene. However, extracting abso-
lute depth using an image from a monocular camera alone is
not possible, contrary to when images are obtained using a
stereo camera setup with a known baseline [122]. Monocular
depth estimation is therefore done using contextual cues in an
image, and the usage of neural networks for estimation [123]
emerges as an appealing solution for end-to-end networks
as they can be easily integrated into the models as auxiliary
tasks.

3) SEMANTIC SEGMENTATION
Semantic segmentation categorizes pixels in an image to their
corresponding object class label, allowing the model to better
understand the contents in its image [124]. In the context
of autonomous driving, this can help models to categorize
different actors in the scene, e.g., pedestrians vs. vehicles, and
to make better-informed decisions when motion planning.

4) BIRD’S EYE VIEW MAP
Predicting a Bird’s Eye View (BEV) map scene involves
projecting image and/or LiDAR inputs to a top-down view
of the scene. Such a view of the ego-vehicle surroundings
‘‘represents an orthographic projection of the physical 3D
space which is better correlated with vehicle kinematics than
the projective 2D image domain’’ [52]. Adding such an output
as an auxiliary task supervised encourages the model to learn
the spatial structure of the scene.

5) OBJECT DETECTION BOUNDING BOX
An object detection auxiliary output is tasked with localizing
and classifying objects in an image using bounding boxes.
The image is typically a BEVmap, and models aim to predict
and decode bounding boxes for agents in the scene, such as
other vehicles and pedestrians, with the correct location, size,
and orientation.

6) TRAFFIC LIGHT STATE
Respecting traffic lights is essential for safe urban driving,
however, traffic lights occupy only a tiny portion in an
image [49], and end-to-end models might struggle to capture
their significance. Adding traffic light classification auxiliary
tasks helps bridge the gap and provides more supervision
towards this important task.

7) REINFORCEMENT LEARNING VALUE
Models supervised using a dataset collected by a reinforce-
ment learning expert [114] can harness value supervision
targets such as the value calculated by the expert. Since
reinforcement learning value is initially calculated using
expected future return from the expert, supervising it allows
the model to estimate how dangerous a situation is [114].

D. AFFORDANCES
Affordances, first proposed by Chen et al. [125] for
autonomous driving, refer to intermediate representations of
the environment, such as the ego vehicle’s angle or lateral
distance with respect to lane markings, the time to collision
with a lead vehicle, etc. They are estimated using a supervised
learning paradigm called direct perception, which serves as a
middle ground between end-to-end learning behavior cloning
models and modular pipelines. Instead of directly predicting
control signals from sensory input in an end-to-end manner,
direct perception approaches first predict affordances, and
those are then passed to a controller module to output
actuation.

VOLUME 12, 2024 146879

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

Sauer et al. [126] map image inputs to 6 affordance
outputs using a CNN feature extractor and a conditional
gating mechanism based on the high-level command (see
Fig. 10). Those predicted affordances are then leveraged by
a low-level controller to output the appropriate steering +

brake/throttle actions. Mehta et al. [127] use affordances
as auxiliary tasks. Toromanoff et al. [49] similarly use
affordances as supervision tasks to train a visual encoder to
better understand its environment. The encoder is then used
to generate encoded features as input instead of raw images
to a model that is trained using RL to output the appropriate
controls. Zhao et al. [47] use stop-intention affordances as
part of the auxiliary tasks to train a privileged model to
drive. The latent vector generated from the encoder of the
auxiliary tasks is then used as additional supervision for the
sensorimotor agent during its training.

FIGURE 10. Affordances predicted by the Conditional Affordance
Learning (CAL) model [126] include hazard stops, red traffic light state,
speed sign km/h values, distance to the leading vehicle, and relative
angle and distance to the road centerline.

E. MOTION FORECASTING
Motion forecasting is a powerful tool for autonomous urban
driving, where many interactive situations arise that require
an understanding of other agents’ intentions for effective
motion planning [128].

Several implementations incorporate motion forecasting
in their end-to-end models as an auxiliary task. Chen et al.
[72] use a transformer encoder to extract social interactions
from the predicted output motion plan and an auxiliary
motion forecasting output. Renz et al. [71] achieve motion
forecasting by predicting future attributes of other vehicles.
The predicted attributes include speed, position, orientation,
and size. The authors of [76], [77], and [93] predict a
probabilistic object density map of other objects in the
scene. Wang et al. [37] decode potential collisions and

the leading vehicle’s relative speed to the ego vehicle.
Hu et al.’s Model-Based Imitation Learning (MILE) [118]
learns a world model alongside motion planning to predict
the evolution of the environment and can generate diverse
and plausible future states and actions to drive entirely from
imagination.

Other implementations incorporate motion forecasting
within their end-to-end models rather than treating it as
an auxiliary task. Jia et al. use a prediction module that
takes previous BEV features alongwith predicted ego-vehicle
outputs to anticipate how surrounding agents would react to
the ego-vehicle’s actions before it performs them [78]. This
allows their model to further refine the output trajectories
afterwards based on the prediction module. Hu et al. [43]
train a CNN to predict a 2D BEV voxel grid and forecast
freespace, where each voxel’s state can be either unknown,
free, or occupied. Free space forecasting is then used to
override waypoints that overlap with occupied locations
to stop the ego vehicle. The ST-P3 model implemented
by Hu et al. [42] uses a prediction module to obtain a
spatio-temporal BEV map that includes the future occupancy
of vehicles and pedestrians. The map is then used to
score sampled trajectories by a motion planning module.
Jia et al. [79] predict the future BEV map of the scene
by aligning its features with the Roach expert that uses a
privileged BEV input [114]. Shao et al. [56] incorporate
a consistency loss from a probabilistic occupancy map to
ensure that generated ego-vehicle waypoints do not overlap
with occupied locations. Language based models’ linguistic
output explanations [38], [39], [61], [62] can implicitly
forecast motion (see Fig. 11).

A few methods implement motion forecasting and ego
motion planning as joint tasks. The authors of [51] and
[129] emphasize learning ego motion planning not just
from expert trajectory demonstrations from an ego-vehicle
perspective, but also from the trajectories of other vehicles
in the scene. This line of thinking resembles how humans
might learn by observing others. Learning ego motion
planning by also leveraging motion demonstrations from
other vehicles further increases the amount of supervision
data that can be extracted from training datasets. Zhang and
Ohn-bar [129] first learn a motion planning policy from
ego-vehicle demonstrations using behavior cloning and use
the learned policy to refurbish other vehicles’ trajectories in
the scene. The ego motion planning model is then retrained
using both ego-vehicle demonstrations and the refurbished
trajectories from other vehicles. Chen and Krähenbühl [51]
apply similar logic, and use partial observability given by
the ego-vehicle raw sensors to learn a viewpoint invariant
intermediate representation and leverage information from
all vehicles. They infer multimodal trajectories of other
vehicles afterwards based on possible high-level commands,
and optimize their trajectory with the most fitting high-level
command. Fu et al. [82] use BEV map features to achieve
a comparable effect of viewpoint invariance. Their model
considers motion forecasting jointly alongside ego motion

146880 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

planning rather than treating them as independent tasks,
and captures the correlation between the two tasks for safe
driving.

F. LANGUAGE OUTPUTS
Language outputs can potentially enhance end-to-end mod-
els’ interpretability by commenting the driving behavior [61].
Wang et al. [39] generate textual explanations alongside
textual driving decision states that are aligned with an Apollo
modular system [130] to obtain control outputs (see Fig. 7).
Language has also been used as feedback to supervise and
distill knowledge to driving models [38], [62] (more details
in Section VIII-C). Language outputs are typically trained to
predict the next token using a cross-entropy loss [38], [39].

FIGURE 11. CarLLaVa’s language explanations comment the current
driving behavior [61]. Note that the authors clarify that the commentaries
provided are experimental and not always accurate, since they are not
always aligned with the actions during training. Red: Space-conditioned
predicted path. Green: Time-conditioned predicted waypoints. Blue:
Target Point.

VII. MODEL ARCHITECTURES
Beyond encoders for sensory inputs and decoders for driving
outputs, this section explores other aspects related to the
architecture of end-to-end models. We examine modular end-
to-end architectures, the attention mechanism’s application in
end-to-end driving, and commonly used end-to-end driving
baselines.

A. MODULAR END-TO-END
While end-to-end models typically follow an encoder-
decoder structure with a perception and a planning/control
module, some implementations explicitly define additional
intermediate modules in their architecture. Hu et al. [42] add
a prediction module that receives aggregated features from a
perception module and outputs an occupancy cost map for a
planning module. Jia et al. [78] propose a larger decoder with
look, predict, and refine modules. Wang et al. [68] propose a
modular Hierarchical Reinforcement Learning (HRL) model
with a perception module and a decision-making/control
module that is decomposed for each high-level command
subtask. Authors of [56] and [104] incorporate memory bank
modules into their models in order to improve temporal
reasoning. In contrast to simply concatenating sequential
inputs, memory banks learn to selectively store and fuse
information from past features that are relevant.

B. ATTENTION AND TRANSFORMERS
The attention mechanism [131] and transformer architec-
tures [132] have become a staple in recent autonomous
driving methods. Initially, the attention mechanism and
transformers were most commonly used in natural language
processing (NLP) tasks to allow models to selectively focus
on relevant parts of an input sequence composed of discrete
tokens that represented parts of words. This facilitated more
effective learning and understanding of linguistic structures
and dependencies. Over time, the use of attention and
transformers has expanded beyond NLPs, due to their ability
to capture contextual reasoning and relationships between
various elements in complex systems and sequence-based
tasks, which is particularly useful in end-to-end autonomous
driving.

Attention and transformers have been often used for sensor
fusion to improve end-to-end models’ understanding of the
relationships between input sensors. Mehta al. [127] use
a learnable soft-attention layer to make low-dimensional
speed and goal conditioning inputs attend to the input
image feature vector. Images have a much larger dimension
comparatively and contribute more towards the final output,
and the usage of soft-attention allows the lower dimension
inputs to contribute more towards the output driving action.
The TransFuser model [53] use transformer modules to
fuse LiDAR and image feature maps from their respective
encoders at multiple resolutions (Fig. 12). By stacking
the feature maps and treating them as a set of tokens,
TransFuser leverages self-attention to better capture the
relationships between the perspective 2D image and the
3D BEV LiDAR point clouds. Transformer encoders have
also been used to integrate features from multiple sensors
after they have been fully encoded by features extractors
using self-attention [37], [52], [93]. Xu et al. [77] argue
that cross-attention can perform better when dealing with
multi-modal sensor inputs when compared to self-attention.
Cross-attention treats features from different sensors as

VOLUME 12, 2024 146881

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 12. The TransFuser architecture [53].

distinct sets to calculate attention scores and find relevant
information between modalities. In contrast, self-attention
calculates attention scores within a single set, so features
from different modalities have to be concatenated before
applying self-attention. Xu et al. first concatenate Lidar
point clouds, images, and driver attention mask features.
Afterwards, they process the concatenated features using both
image cross-atention and point cloud cross-attention layers to
achieve sensor fusion. Rao et al. [104] fuse a monocular input
image with its corresponding depth and semantic predictions
using a transformer encoder and a semantic-depth aware
decoder to obtain a BEV map. First, each of the image,
depth, and semantic features are passed through a global
self-attention layer independently to generate their respective
embeddings. Afterwards, the embeddings are passed through
self-attention, depth, semantic, and visual cross-attention
layers to decode a BEV map.

The attention mechanism has also been used to enhance
interactions between outputs, inputs, and intermediate layers
of end-to-end models. Wu et al. use attention [116] to
share encoded features between two branches, one that
outputs future waypoints as a trajectory, and another that
predicts multiple future control commands. The former’s
waypoint locations guide the latter’s future control signals
using attention, highlighting important areas of the encoded
input image to output reasonable controls over future
time steps. Following similar ideas, they later develop the
ThinkTwice model [78], where the model first generates
a coarse trajectory in BEV space, then employs a look
module followed by a predict module to refine the coarse
trajectory and produce the final output. The look module
is inspired by how human drivers make sure their target
location is safe to drive to before actually executing the
necessary maneuvers. This module projects the initial coarse
trajectory back to the perspective image plane using the
cameras’ intrinsics and extrinsics. Multi-scale deformable
attention [133] using encoded sensor features and encoded
trajectory features is adopted to aggregate information around

the reference reprojected camera pixels, since the information
they provide is sparse and might contain reprojection errors.
Since those errors are generally local around a small
region, deformable attention [133] is precise and outperforms
traditional attention from image transformers [134], which
have limited spatial feature resolutions. Zhang et al. [41]
use a transformer-based architecture to align features from a
BEV-based privileged teacher to an image-based student and
help the latter learn better image-to-BEV projection. Queries
from the teacher’s BEV space are mapped to the image space
using Inverse Perspective Mapping (IPM) [135] to produce
reference points in the image plane. Afterwards, deformable
cross-attention based on [133] is employed to attend to
regions around the reference points to facilitate image to
BEV projection. Ishihara et al. [108] add convolution block
attention modules [136] to emphasize auxiliary and driving
task feature maps during training. Jaeger et al. [92] study
the significance of using a transformer decoder for pooling
features before GRU decoders. They show that transformer
decoders allow their model to better retain learned spatial
information of the scene and lane structures, and ensure
that generated waypoints do not exhibit dangerous driving
behaviors. Sun et al. [76] employ a TransFuser-inspired
backbone to generate a high-dimensional scene feature
concatenated from images and point cloud encoders. The
concatenated feature is then processed by efficient channel
attention (ECA) modules [137], which are applied separately
for each auxiliary task and the driving task. The ECAmodules
add task-specific weights of channels to the high-dimensional
concatenated feature and can be used to evaluate how each
auxiliary task contributes to the overall scene understanding.

Understanding interactions between agents in the driving
scene can be further improved through the usage of trans-
formers and the attention mechanism. Renz et al. [71] use
object-level representations instead of raw pixels as inputs to
a transformer encoder based on the BERT architecture [138].
The objects can represent the ego vehicle, other vehicles,
or the route segments to follow, and they are tokenized

146882 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

individually as vectors. The model decodes waypoints for
the ego vehicle and predicts motion probabilities of other
vehicles for the next time-stepwith the help of the transformer
encoder’s self-attention. Self-attention allows the model to
attend to relevant objects in the scene even when they are
geometrically distant, consequently improving interactions
between the ego and other vehicles. Chen et al. [72] use a
spatial transformer encoder using objects in the environment
as input to capture interactions between the ego-vehicle,
other dynamic objects, and the reference route. The reference
routes and observed objects are first projected into a
high-dimensional space using embedding layers before being
input into the transformer encoder, where self-attention is
employed. Afterwards, the outputs from the transformer
encoder and an MLP-encoded offline trajectory tree are
attended to using the attention mechanism in order to select
a leaf trajectory with the highest score, which is then refined
and used for motion planning. Fu et al. [82] use local and
global transformers to process BEV map view features of
vehicles in the scene to achieve joint motion forecasting and
ego planning. The local transformer focuses on distinguishing
important regions within the input features for each vehicle,
and the global transformer integrates these features across
all vehicles to comprehensively consider their interactions.
Shao et al. [56] construct a graph using environment and
object (vehicles, bicycles, pedestrians) features, and pass
them through a graph attention network [139] to model their
interactions.

C. COMMONLY USED BASELINES
1) CONDITIONAL IMITATION LEARNING
The Conditional Imitation Learning (CIL) model (Fig. 5)
was the first IL model to be implemented in CARLA [8],
and served as a baseline for several future works. Li et al.
[107] added output auxiliary tasks to the CIL baseline.
Ishihara et al. [108] also output auxiliary tasks, while
further adding convolution block attention modules [136] to
the CIL network to emphasize task-specific feature maps
during training. Liang et al. [140] employ two CIL networks
as actor and critic to learn driving using DDPG [141].
Mueller et al. [44] use a binary road segmentation input to
CIL, and change the decoder to output waypoints instead of
direct control. Prakash et al. [142] experiment with DAgger
training algorithms [143] using a CIL baseline. Park et al.
[144] employ a CIL baseline in their study to address
causal confusion by regularizing imitation learning through
a two-stage learning approach. Xiao et al. [94] use CIL to
explore the performance of multiple RGB image and depth
fusion schemes in urban driving.

Codevilla et al. later proposed CILRS (Conditional
Imitation Learning with a ResNet architecture and Speed
prediction) [19], which extended the CIL baseline with a
deeper convolutional architecture and a speed prediction
auxiliary task. Behl et al. [69] studied label efficiency of
semantic segmentation visual abstractions in urban driving

using CILRS. Prakash et al. [53] proposed AIM to improve
the performance of CILRS by replacing the direct control
output with an auto-regressive waypoint prediction network.
Later works used the AIM baseline to incorporate auxiliary
tasks [52] with AIM-MT, or with a priviliged BEV input
with AIM-BEV [145]. Kim et al. [109] extend CILRS using
temporal inputs and outputs. Zhang et al. [114] use a BEV
input to CILRS to train a privileged teacher model using RL,
which is then later used to teach and supervise a sensorimotor
student agent. Xiao et al. [111] extend CILRS with a wider
image Field of View (FOV) using three cameras and a
transformer attention mechanism to associate feature maps
between them.

2) TRANSFUSER
The TransFuser model (Fig. 12) has been further devel-
oped into three additional versions following subsequent
improvements [54], [91], [92]. TransFuser+ [91] upgrades
TransFuser with an improved expert for data collection
and adds depth and semantic segmentation auxiliary tasks.
Chitta et al.’s TransFuser [54] uses three cameras instead
of one for a wider field of view, an improved encoder, and
additional detection and BEV map auxiliary tasks on top
of depth and semantic segmentation. Finally, TransFuser++

[92] further improves the expert and the waypoints decoder,
and disentangles speed and path predictions.

TransFuser has also been used as a baseline in other
implementations. Zhang et al. [75] use the TransFuser
architecture and additionally include Radar and HDMap
inputs. Sun et al. [76] use the TransFuser architecture to
generate an interpretable and high-dimensional scene feature
from an image and sequential LiDAR sweeps inputs. Ref-
erences [71], [72] use TransFuser’s detection auxiliary task
to use object-level inputs to their models. Hanselmann et al.
[145] use the TransFuser baseline to study the effect of
scenario-generation techniques during data collection on the
driving performance during inference.

3) TCP
The Trajectory-guided Control and Prediction (TCP) base-
line [116] (Fig. 13) implements a situation-based fusion
technique based on a dual output from a trajectory and
a control branch. Its dual output head has been used by
Jia et al. for both the ThinkTwice [78] and DriveAdapter [79]
models. The MAGNet model [117] follows a TCP-inspired
architecture, and leverages the self-attention mechanism to
improve branch interactions. The model also implements
control fusion through a learning-based gating network,
contrary to the rule-based fusion approach of TCP.

VIII. TRAINING
Training is the core process that defines deep learning,
as it is through training that models develop and learn to
solve a given task. Most end-to-end models in CARLA use
imitation learning, most notably behavior cloning, as the
main training paradigm. Consequently, we explore various

VOLUME 12, 2024 146883

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 13. The Trajectory-guided Control and Prediction (TCP)
architecture [116].

aspects that define the imitation learning process in this
section, such as dataset collection using experts and dataset
augmentation techniques. We additionally dedicate sections
towards explaining both the Inverse Reinforcement Learning
(IRL) and Reinforcement Learning (RL) paradigms and their
application in CARLA.

A. EXPERT AGENTS
Collecting data in CARLA for supervised learning can be
done using autonomous privileged experts that are either
rule-based or learning-based. Privileged experts leverage
precise, ground-truth information about the environment
using the simulator’s API. They are more time and
cost-efficient than humans for data collection since they can
collect data at accelerated speeds and in parallel. However,
this advantage comes with the trade-off of comparatively
suboptimal performance [91]. This section gives a brief
overview of the types of expert drivers that are used for data
collection. We refer the reader to [91] and [148] for more
details on expert agents.

1) RULE-BASED EXPERTS
Rule-based experts follow a reference global path with
dense waypoints using longitudinal and lateral controllers
to generate throttle/brake and steering, and avoid obstacles
using different emergency breaking and motion forecasting
techniques (Table 5).
Most implementations follow an A* [24] reference path

with dense waypoints. Some implementations additionally
generate a local path that changes dynamically to handle over-
taking and obstacle avoidancemaneuvers, which is especially
useful for handling leaderboardv2’s challenging scenarios.
PDM-Lite [148] performs lane switching maneuvers based
on the encountered scenario. Kyber-E2E [147] uses sampled
trajectories that can deviate from the reference path to handle
scenarios.

Early methods define a set of longitudinal velocity targets
to follow based on the ego vehicle’s situation and location.
Situations include stopping when a potential collision is
detected, or slowing down near pedestrians and when
steering. Otherwise, the ego vehicle is programmed to drive
at a constant velocity. Villaflor et al. [146] adapt the constant
velocity to match the road speed limit instead. They state
that previously defined constant velocities act as a loophole

to handle interactive scenarios by completely avoiding them
through slow driving. Wang et al. [37] define additional
target speeds based on a chain-of-thought process reasoning
with respect to the leading vehicle’s speed, time-to-collision,
and road speed limit factors. Zhang et al. [147] use an
SLT planner [149] (planner using the Frenet frame instead
of cartesian coordinates) to sample multiple Bezier curves
with different speed profiles (constant accelerations). The
trajectory with the least cost is chosen, where cost weights are
learned using an inverse reinforcement learning max-margin
method [150]. Beißwenger [148] uses the Intelligent Driver
Model (IDM) [151] to determine continuous target speeds
based on a leading actor. The leading actor does not only
represent leading vehicles, but can also represent pedestrians,
stop signs, traffic lights, and route obstacles.

Lateral reference targets are mostly defined based on an
aim direction towards a waypoint, similar to the example
in Fig. 9. Kyber-E2E defines the reference angle based on
sampled trajectories.

Most methods employ PID controllers for both lateral and
longitudinal control. Jaeger’s SEED (Simple and Effective
Expert Driver) [91] uses an MLP controller trained with the
soft actor-critic algorithm in their learning-based version.
PDM-lite uses a linear regression model for longitudinal
control. The early expert algorithms (LBC [48], old Trans-
Fuser([53]) perform emergency braking if a red light
is perceived within a certain distance or if a vehicle or
pedestrian is detected within a cone-like area in front
of the ego-vehicle. They do not predict other agent’s
trajectories. Zhang et al. [75] incorporate lane informa-
tion and time to collision calculations based on velocity
and position vector projections to avoid collisions with
other cars during lane changing maneuvers. Later methods
forecast other agent’s motion by unrolling the kinematic
bicycle model with an action repeat assumption, i.e. the
current control action is going to be repeated in the next
time-step.

2) LEARNING-BASED EXPERTS
End-to-end privileged models leverage the simulator’s API
to obtain ground-truth input values. The LBC approach [48]
first trains a privileged model with ground-truth BEV images
input to drive using imitation learning from a dataset collected
by a rule-based expert. Afterwards, the privilegedmodel itself
is used as an expert to collect new data for the sensiromotor
model. The Roach (RL Coach) expert [114] similarly uses
multiple privileged BEV images as input (Fig. 14) to train a
privileged model with PPO [152]. Wu et al. [116] extend the
Roach expert with additional rule-based collision detection
inspired by the TransFuser expert [53]. Think2Drive [55]
employs a model-based RL agent based on Dreamerv3 [153]
to drive using BEV input. Contrary to previous methods, the
authors of [71] and [146] forego the usage of pixel-level input
(such as the rasterized images of the BEV map) and instead
directly use object-level representations of the scene as input.

146884 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 5. Rule-based experts.

B. DATASETS
Imitation learning models in CARLA learn from a dataset
that has been collected using a privileged automatic expert.
Therefore, the data distribution and structure of datasets play
an important role in determining the performance of the
sensorimotor imitation learning model.

Datasets are commonly augmented to avoid overfitting
and increase the variance in the demonstration examples
seen during training to help models generalize better
during inference [154]. Directly manipulating the dataset’s
image features through augmentation techniques such as
changing contrast, brightness and tone, adding blur and noise,
or removing pixels has been used to add more variance to
the dataset [44], [45], [56], [68], [144], [155]. Additional
variance can also be achieved by changingweather conditions
for each collected frame. Viewpoint augmentation adds more
viewpoints to the dataset by shifting camera sensors during
data collection or by using additional cameras [48], [49], [54],
[59], [92]. These techniques help models learn to identify the
essential features of the images, making them less sensitive
to variations and distortions and generalize better to new,

unseen data. Augmenting the dataset by simply scaling its
size has also been shown to be correlated with improved
driving performance [71], [78], [79].

Since driving straight is the most common action during
driving, dataset balancing aims to reduce this bias and sample
more frequently from demonstrations involving other actions
with more steering and acceleration/deceleration [44], [46],
[52], [61], [155]. Zimmerlin et al. [156] explore an alternative
dataset balancing and filtering technique by estimating target
label changes instead of sampling based on demonstration
frequencies.

Control noise injection [66], [127], [142], [157] introduces
occasional perturbations to the expert driving during data
collection so that it is forced to recover from errors
and provide demonstrations to address the co-variate shift
problem. DAgger (Dataset Aggregation) techniques [143]
aim to tackle this issue by querying online human expert
guidance when the learning agent drifts and accumulates
errors. By aggregating new expert demonstrations into the
base training dataset where the agent has previously failed,
the learning agent can better recover from errors. While this

VOLUME 12, 2024 146885

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 14. The BEV image inputs used for the Roach expert [114].

technique can be applied multiple times iteratively, relying
on a human expert for multiple interventions can be costly
and inefficient. On the other hand, CARLA’s agent and
environment states’ values can be accessed at will, which
makes privileged automatic expert agents an alternative
viable option. Prakash et al. [142] explore DAgger techniques
applied to vision-based urban autonomous driving using a
CIL model. They experiment with a ‘‘critical-state-aware’’
DAgger technique and use a fixed-size replay buffer that
focuses on improving the policy where the learning agent
exhibits weak performance and behavior. Li et al. [158]
train an agent to drive using reinforcement learning with no
environmental rewards, but with proxy value functions from
human demonstration queries during dangerous situations.

The traffic behavior generated by CARLA is rule-based
and model-driven, and is less complex than real-life or data-
driven simulations that are more stochastic in nature [159].
Hanselmann et al. [145] tackle this issue by implement-
ing gradient-based optimization techniques to incorporate
adversarial scenarios during training. The imitation learning
model that learns off of the dataset with such scenarios gains
improved collision avoidance performance (Fig. 15).

C. POLICY DISTILLATION
Chen et al. [48] argued that sensorimotor agents struggle
to learn using a dataset collected by a rule-based planner,
because they have to learn how to see and how to act
simultaneously. They proposed LearningByCheating (LBC),
an approach that decomposes imitation learning into two
stages. First by training a conditional end-to-end model to
focus on how to act by giving it privileged BEV input of
the environment. Afterwards, the privileged agent is used
to distill its policy and train the sensorimotor model. The
privileged agent can give on-policy queries at any state of
the environment and provides denser supervision, since the
supervision signal can be applied to all conditional high-
level commands. Chen et al.’s Learning from All Vehicles
(LAV) implementation [51] first trains a perception module
and a motion planner with privileged BEV input that learns
from both ego and other vehicle trajectories. Both the
perception module and the motion planner are then used to
distill their policies to a sensorimotor agent. Zhang et al.’s
squeeze and mimic (SAM) implementation [47] first trains
a squeeze network that takes a privileged ground-truth

semantic segmentation mask input and stop intentions
values which indicate how urgent it is to stop to avoid
dangerous situations. The network encodes and ‘‘squeezes’’
the inputs into a latent representation that provides additional
supervision for the sensorimotor ‘‘mimic’’ network’s vision
encoder with a normal image input.

Zhang et al. use an RL agent, Roach (RL coach), with
privileged BEV input to teach a sensorimotor imitation learn-
ing model to drive [114]. Once Roach is fully trained, it is
used to collect driving trajectories to generate a dataset with
2D images and corresponding action and value outputs. The
imitation learning agent then learns to drive supervised by the
collected dataset’s outputs and by employing DAgger [142]
with on-policy supervision from Roach. Chen et al. [110]
teach a privileged agent to estimate discretized action-value
functions of the ego vehicle’s surrounding environment using
Bellman equations. The action-values are then used for policy
distillation to supervise a sensorimotor agent.

Reference [41] propose Coaching a Teachable Student
(CaT) to further reduce the gap of knowledge that can be
found between the privileged teacher and the sensorimotor
agent. They use an alignment module with an Inverse
Perspective Mapping (IPM) [135] based transformer to map
the 3D privileged BEV space to the 2D image features.
The IPM facilitates the student’s learning process since it
reduces the distribution gap between perspective 2D and
BEV 3D images. Jia et al.’s DriveAdapter [79] employs
alignment modules between student and teacher to reduce
the distribution gap in perception. They use Roach as a
teacher and freeze its parameters when the training is done.
Afterwards, instead of letting the student learn planning again
like other policy distillation implementations, the student
instead learns to output BEV semantic segmentation using
camera and LiDAR inputs. The BEV output is used as
input to the Roach model and is supervised using both the
ground-truth BEV semantic segmentation loss and the action
loss.

Zhang et al. [38] train a camera-only sensorimotor model
to drive with language in two stages. First, using feature
distillation from a privileged MLLM driving agent, and
afterwards by fine-tuning the sensorimotor model with
language feedback from the privileged agent. Mei et al. [62]
use GPT-4 as an analytic process to reflect on traffic accidents
by caused by a lightweight heuristic language model. The

146886 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 15. KING scenario generation image [145]. Collision avoidance improves with the incorporation of adversarial scenarios induced by
safety-critical perturbations during training.

analytic process provides improved reasoning and decisions
regarding the accidents and adds insights to a memory bank.
The samples from the memory bank are then used to distill
improved knowledge through supervised fine-tuning.

D. VISUAL PRE-TRAINING
Visual pre-training training can simplify learning the driving
task by decomposing the training into two steps, where the
end-to-end model first learns how to see, and afterwards how
to act. This is employed by many reinforcement learning end-
to-end models (see Section VIII-E) where the vision encoder
is trained using supervised learning, and motion planning
is learned using RL with a frozen encoder [49], [66], [67],
[68]. The authors of [44], [69], and [70] first train a separate
perception module based on semantic segmentation tasks,
and afterwards use the encoder’s semantic predictions as
input to an end-to-end driving model. Wu et al. [40] propose a
two-step self-supervised vision pre-training method that can
be applied to downstream driving tasks. In the first step, the
vision encoder is trained using temporal inputs and two sub-
networks (pose and depth) to infer ego motion. Afterwards,
the encoder learns to predict ego motion based on a single
frame input by focusing on driving relevant information
learned from the first step. Finally, the vision encoder can
be fine-tuned by supervising the agent with expert driving
demonstrations [70].

E. REINFORCEMENT LEARNING AND REWARDS
Reinforcement learning has been used in CARLA either as
the main training paradigm [49], [55], [66], [67], [101], [102]
or combined with imitation learning [110], [114], [140].
The first RL baseline in CARLA [8] used A3C [160] to

learn goal-directed urban driving. Episodes were designed
to terminate when the ego-vehicle reaches the goal, collides
with an obstacle, or runs out of a fixed time limit. The reward

consisted of a weighted sum of five terms. Positive rewards
were given for higher speeds and for progression towards
the goal destination. Punishments, i.e negative rewards, were
given for collision damage, overlaps with sidewalks, and
overlaps with opposite lanes. Despite training on 12 days’
worth of data, the RL agent significantly underperformed
when compared to Conditional Imitation Learning (CIL).
The authors argued that poor results were likely due to RL
being brittle [161]. Hyperparameters play a big role in deep
RL’s performance, and need to be carefully selected with
extensive trials and searches. Another possible reason for
poor performance is that RL signals (rewards) are too weak
to train the entirety of an end-to-end model [49]. The raw
input image dimensions, the size of neural networks, and the
complexity of urban driving are too big to be trained with RL
only, as RL is not very sample efficient [162].

Liang et al. [140] tackle the sample efficiency problem
by first pre-training an end-to-end model’s parameters
with imitation learning. It is then fine-tuned using another
network with a similar architecture in an actor-critic setup
using Deep Deterministic Policy Gradient (DDPG) [141].
Toromanoff et al. [49] first train a visual encoder to learn
to see using semantic segmentation, depth, and affordance
auxiliary tasks. Afterwards, the encoder is frozen and the
encoded features are used as input to a Rainbow-IQN [163]
that is trained using rewards based on desired speed, position,
and rotation. Rainbow-IQN is based on DQN [164] and
uses a replay buffer to train the network. Chekroun et al.
use a similar two stage approach [66], and augment the
reinforcement learning replay buffer with offline expert
demonstrations that are considered optimal. The model thus
learns from both exploration and demonstration data.

Zhang et al. [114] use privileged BEV input to output
steering and acceleration distributions by using PPO [152]
with clipping to train the network. They use the same rewards

VOLUME 12, 2024 146887

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 6. Overview of sensorimotor CARLA end-to-end autonomous driving methods. Method: Name and year of end-to-end method. Description: Brief
description of end-to-end method. Sensor: Types of sensors used for perception input. ‘C’ stands for Camera, ‘L’ for LIDAR, ‘R’ for Radar, ‘M’ for HDMap,
and ‘T’ for temporal input. Goal: Goal-conditioning input. ‘TP’ stands for Target Point (TP) and ‘HLC’ for High-level Command (HLC). Other: Other types of
inputs used. ‘Sp’ denotes Speed, and ‘Steer’ denotes steering angle. Enc: Encoder used for sensor feature extraction. Dec: Decoder used to produce the
final output. In this table, MLP represents both MLPs and fully-connected layers for the purposes of simplicity. Att: The attention mechanism is used in
the model. Type: Output type. ‘DC’ denotes direct control, and ‘WP’ denotes waypoints. ‘WP(dis)’ indicates that steering and velocities from waypoints are
disentangled and calculated separately. Aux Tasks: Auxiliary tasks outputs. ‘D’ stands for depth prediction, ‘SS’ stands for semantic segmentation, ‘Sp’
stands for speed, ‘BEV’ stands bird’s-eye view map, ‘BB’ stands for bounding box (for object detection), ‘Traff’ stands for traffic light state, and’RL’ stands
for reinforcement learning value (when supervised with an RL agent). Forecast: Motion forecasting of other agents in the scene. Training: Training
techniques used. ‘BC’ stands for behavior cloning, ‘RL’ stands for reinforcement learning, ‘IRL’ stands for inverse reinforcement learning, ‘VPT’ stands for
visual pre-training, ‘PD’ stands for policy distillation, and ‘CE’ stands for a cross-entropy loss for next token prediction. Bench: Benchmark used.

146888 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 6. (Continued.) Overview of sensorimotor CARLA end-to-end autonomous driving methods. Method: Name and year of end-to-end method.
Description: Brief description of end-to-end method. Sensor: Types of sensors used for perception input. ‘C’ stands for Camera, ‘L’ for LIDAR, ‘R’ for Radar,
‘M’ for HDMap, and ‘T’ for temporal input. Goal: Goal-conditioning input. ‘TP’ stands for Target Point (TP) and ‘HLC’ for High-level Command (HLC). Other:
Other types of inputs used. ‘Sp’ denotes Speed, and ‘Steer’ denotes steering angle. Enc: Encoder used for sensor feature extraction. Dec: Decoder used to
produce the final output. In this table, MLP represents both MLPs and fully-connected layers for the purposes of simplicity. Att: The attention mechanism
is used in the model. Type: Output type. ‘DC’ denotes direct control, and ‘WP’ denotes waypoints. ‘WP(dis)’ indicates that steering and velocities from
waypoints are disentangled and calculated separately. Aux Tasks: Auxiliary tasks outputs. ‘D’ stands for depth prediction, ‘SS’ stands for semantic
segmentation, ‘Sp’ stands for speed, ‘BEV’ stands bird’s-eye view map, ‘BB’ stands for bounding box (for object detection), ‘Traff’ stands for traffic light
state, and’RL’ stands for reinforcement learning value (when supervised with an RL agent). Forecast: Motion forecasting of other agents in the scene.
Training: Training techniques used. ‘BC’ stands for behavior cloning, ‘RL’ stands for reinforcement learning, ‘IRL’ stands for inverse reinforcement learning,
‘VPT’ stands for visual pre-training, ‘PD’ stands for policy distillation, and ‘CE’ stands for a cross-entropy loss for next token prediction. Bench: Benchmark
used.

VOLUME 12, 2024 146889

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 6. (Continued.) Overview of sensorimotor CARLA end-to-end autonomous driving methods. Method: Name and year of end-to-end method.
Description: Brief description of end-to-end method. Sensor: Types of sensors used for perception input. ‘C’ stands for Camera, ‘L’ for LIDAR, ‘R’ for Radar,
‘M’ for HDMap, and ‘T’ for temporal input. Goal: Goal-conditioning input. ‘TP’ stands for Target Point (TP) and ‘HLC’ for High-level Command (HLC). Other:
Other types of inputs used. ‘Sp’ denotes Speed, and ‘Steer’ denotes steering angle. Enc: Encoder used for sensor feature extraction. Dec: Decoder used to
produce the final output. In this table, MLP represents both MLPs and fully-connected layers for the purposes of simplicity. Att: The attention mechanism
is used in the model. Type: Output type. ‘DC’ denotes direct control, and ‘WP’ denotes waypoints. ‘WP(dis)’ indicates that steering and velocities from
waypoints are disentangled and calculated separately. Aux Tasks: Auxiliary tasks outputs. ‘D’ stands for depth prediction, ‘SS’ stands for semantic
segmentation, ‘Sp’ stands for speed, ‘BEV’ stands bird’s-eye view map, ‘BB’ stands for bounding box (for object detection), ‘Traff’ stands for traffic light
state, and’RL’ stands for reinforcement learning value (when supervised with an RL agent). Forecast: Motion forecasting of other agents in the scene.
Training: Training techniques used. ‘BC’ stands for behavior cloning, ‘RL’ stands for reinforcement learning, ‘IRL’ stands for inverse reinforcement learning,
‘VPT’ stands for visual pre-training, ‘PD’ stands for policy distillation, and ‘CE’ stands for a cross-entropy loss for next token prediction. Bench: Benchmark
used.

as Toromanoff et al. [49] and also penalize large steering
changes to prevent oscillations. Their privileged RL agent,
named Roach (Reinforcement Learning Coach) is then used
to distill its policy to an imitation learning agent.

Zhao et al. [67] also use a two-stage training approach,
where they first train a perceptionmodulewith aDANet [165]
backbone that leverages the attention mechanism using
offline driving demonstrations and behavior cloning. The
perception module is then frozen, and its latent features are
used as input to a PPO agent [152] that learns to drive
using a combination of sparse and dense rewards. The sparse
rewards include collisions, vehicle blocked infractions, and
route deviation infractions. The dense rewards included a
deviation degree reward, a deviation distance reward, and a
velocity reward.

Contrary to previous works, Coelho et al. [102] train both
the vision encoder and the control output using RL signals
only. They opt for a smaller size image encoder with around
1M parameters to avoid the issue where the RL signal is
too weak to train a deep vision network, such as ResNet50
[166]. They use A-LIX layers [167] to maintain spatial
consistency between the encoder’s feature maps and prevent
self-overfitting, and use the soft actor-critic algorithms [168]

with the same rewards as [114] to train their model end-to-
end. Coelho et al. later proposed Reinforcement Learning
from Online Demonstrations (RLfOLD) [101] to address the
distribution gap found between offline expert demonstrations
and online agent exploration data in the replay buffer when
combining RL with IL. In addition to the RL soft actor-
critic loss [168] that maximizes return and entropy, they
incorporated an additional imitation learning loss that aims to
maximize the log-likelihood of actions given by a privileged
expert rule-based agent. The expert agent is also used to
provide demonstrations during the online exploration phase,
where its policy can take over and provide actions when the
RL’s policy uncertainty exceeds a certain threshold.

Chen et al. [110] first learn a forward model to understand
how control actions, i.e., steering and throttle/brake, change
the next world state. They assume that the world is on
rails and their actions only influence the ego-vehicle state,
allowing them to discretize the world into a tabular format
using only the ego forward model and world states from an
offline dataset. This significantly simplifies the estimation of
action-value functions through the use of Bellman equations.
The value function is represented as a 4D tensor with
discrete BEV position (horizontal and vertical), velocity,

146890 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

and orientation bins. The value function is estimated using
positive rewards that are given when the ego-vehicle stays in
the desired position, orientation, and speed. It is also rewarded
when breaking or having zero velocity in zero-speed regions
such as red lights and penalized otherwise. The action-values
are then used to supervise a sensorimotor agent using policy
distillation.

Li et al. [55] employ the Dreamerv3 model-based RL
structure [153] to learn a world model and a planner. They use
a recurrent state-space model (RSSM) to encode privileged
BEV input into a latent space that is modeled using stochastic
and deterministic components. The RSSM is trained to
predict a rollout of the world model in latent space so
that the planner can learn from its imagination and reduce
the amount of interactions necessary with the simulator
itself. Their reward function combines additive speed and
progression rewards, and penalizes lane center deviation and
steering. Steering is penalized when the current steering is
different from the previous steering action, in order to avoid
oscillations.

F. INVERSE REINFORCEMENT LEARNING
A few implementations have explored using Inverse Rein-
forcement Learning (IRL) for end-to-end autonomous driving
using the CARLA simulator [42], [147], [169], [170].
Couto et al. [169] combine Generative Adversarial Imitation
Learning (GAIL) [35] with a Behavior Cloning (BC) loss.
The BC loss offers stronger supervision at the beginning
of training when the discriminator is not yet fully trained.
As training progresses, the influence of the BC loss gradually
decreases, allowing the discriminator to take on a more
dominant role in guiding the policy training. Lee et al. [170]
learn a BEV costmap for highway driving by proposing
an improved version of maximum entropy deep inverse
reinforcement learning [171] with reduced costmap noise and
temporal information. The spatiotemporal costmap is used by
a Model Predictive Control (MPC) to generate steering and
throttle commands. Hu et al. [42] also learn a spatiotemporal
BEV costmap function, which is based on learnable subcosts
that include safety, comfort, progress, future occupancy, and
traffic rules. The cost map is learned using a max-margin
loss and is used to choose the best trajectory from a sampled
set. The trajectory is further refined using a GRU network
with a simple behavior cloning loss. Zhang et al.’s modular
implementation [147] similarly uses inverse reinforcement
learning for trajectory scoring and sampling in the motion
planning module. The optimal trajectory is chosen using a
combination of costs such as swiftness, comfort, and safety
that are learned using a maximummargin planning algorithm
from [150].

IX. EVALUATIONS AND DISCUSSION
We provide Longest6, Town05 Long, leaderboardv1, and
leaderboardv2 benchmark evaluations of sensorimotor agents
in Tables 7, 9, 10, and 8 respectively. Since non-leaderboard
evaluations (Tables 9 and 10) are obtained from papers rather

than the leaderboard website, results vary in terms of the
significant figures’ format. Therefore, we choose to keep the
obtained evaluations as they are presented in their respective
papers. As for leaderboard evaluations, we mainly focus on
the sensors track, where the usage of an HD map is not
allowed. This is due to the map track being mostly dominated
by modular implementations, which is beyond the scope of
this survey.

In this section, we begin by sharing a few insights
regarding implementation choices, their ablation studies, and
their evaluations. We mostly focus the discussion around
leaderboardv1 and variants, since results in leaderboardv2
are drastically lower (highest DS ≈ 80, 73, 76, and 7 for
leaderboardv1, Longest6, Town05 Long, and leaderboardv2
respectively). Afterwards, we explain factors that result in
much lower scores in leaderboardv2. We emphasize that the
insights provided in this section are mainly for observation,
and are not necessarily indicative of a direct correlation to
an improvement in performance. It should also be noted
that online leaderboard results are difficult to analyze since
the runs are hidden, and the results are highly variable,
showing significant disparities when compared with tests
using community-created benchmarks [61], [92].

A. LEADERBOARDV1 AND VARIANTS EVALUATIONS
1) MODEL INPUT CHOICES
While most top-performing implementations use multi-
modal sensors for their models, there have been a few
camera-only implementations (DriveCot, MAGNet, Enhanc-
ing, TCP) that achieved decent success (see Fig. 16). M2DA,
Interfuser, and TransFuser study how incorporating LiDARs
can lead to an improvement in their models. DriveMLM
conducts a similar study for sensor modality, although the
authors notice that incorporating LiDAR point clouds has
little impact on performance.

As mentioned previously in Section V, implementations
saw varying results regarding the usage of temporal inputs.
It could be possible that incorporating temporal inputs is
mostly beneficial when the output task explicitly relies on
temporal aspects, since most of the methods that saw an
improvement with temporal inputs in their ablation studies
(ST-P3, ThinkTwice, ReasonNet, Enhancing, CarLLaVa,
DriveMLM, DriveCot) also forecast the motion of other
vehicles as an additional task. For example, [61] saw an
improvement in avoiding rear-end collisions when experi-
menting with temporal inputs to their CarLLaVa model.

As for goal conditioning inputs, models that use Target
Points (TPs) significantly outperform those that don’t. The
highest DS achieved for methods using only High-level
Commands (HLCs) does not pass the 50% mark in any
benchmark (highest being GRI [66] ≈ 37 for leaderboardv1,
WOR [110] ≈ 24 for Longest6, and WOR ≈ 45 for Town05
Long).

Although all leaderboard methods discussed in this section
were tested on the sensors track, it is important to highlight

VOLUME 12, 2024 146891

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 7. Leaderboardv1 results, sensor track (accessed Jun2024). DS : Driving Score | RC: Route Completion | IP: Infraction Penalty | Coll Ped: Collisions
Pedestrians | Coll Veh: Collision Vehicles | Coll lay: Collisions Layout | Red: Red Light Infractions | Stop: Stop Sign Infractions | Off: Off-road Infractions |
Dev: Route Deviations | Time: Route timeouts | Blocked: Agent Blocked.

TABLE 8. Leaderboardv2 results, sensor track (accessed Jun2024). DS : Driving Score | RC: Route Completion | IP: Infraction Penalty | Coll Ped: Collisions
Pedestrians | Coll Veh: Collision Vehicles | Coll lay: Collisions Layout | Red: Red Light Infractions | Stop: Stop Sign Infractions | Off: Off-road Infractions |
Dev: Route Deviations | Time: Route timeouts | Blocked: Agent Blocked. | Yield: Yield Emergency infractions. | Sc Time: Scenario Timeouts. | Min Speed:
Minimum Speed Infractions.

the role of HD maps in the context of end-to-end model
inputs. MMFN [75] incorporated an HD map from the
leaderboard’s map track in their end-to-end implementation,
experimenting with both rasterized and vectorized map for-
mats. The latter yielded better results in their ablation studies,
and achieved aDS of 22.8 in the online leaderboard. Although
this score was competitive at the time, it has since been
surpassed by more recent sensors track implementations,
despite the additional HD map input. This could therefore
be attributed to factors beyond the input data itself, such as
advances in model outputs and decoder architectures, which
are further explained below.

2) MODEL OUTPUT CHOICES
Only DriveAdapter achieves decent results (DS ≈ 71, 72
for Longest6 and Town05 Long respectively) with direct
control outputs. Most recent implementations use waypoints

since they plan towards the future as well. TransFuser++,
Enhancing, and CarLLaVa show how disentangling way-
points, where speeds and headings are calculated separately,
can lead to improved performance. Auxiliary tasks have been
adopted by several methods in the state-of-the-art. Ablation
studies by MILE, ThinkTwice, TransFuser, and II-DSU
show a noticeable drop in the DS when excluding auxiliary
tasks, especially the BEV, from their models. Motion
forecasting of other agents improved driving performance as
per the ablation studies of ThinkTwice, II-DSU, FAST, and
InteractionNet.

3) MODEL ARCHITECTURE CHOICES
A few implementations have experimented with different
architectural designs for their models to gauge their impact
on driving performance. Chitta et al. [54] experiment with
various CNN encoder designs, such as ResNet [166],

146892 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

TABLE 9. Longest6 results. DS : Driving Score | RC: Route Completion |
IP: Infraction Penalty. Methods with ‘‘∗’’ have been evaluated by other
papers and not by the paper itself. Since those methods have been
evaluated multiple times by others with varying results, we choose to
keep the highest evaluation and cite the paper that obtained the
evaluation in brackets ‘‘()’’. It should be noted that not all methods use
the same amount of training data.

RegNet [172], and ConvNeXt [173]. They found that RegNet
backbones worked best for the TransFuser model. Renz et al.
show how using a Visual Language Model (VLM) image
encoder in CarLLava outperforms commonly used ResNet
encoders. They also conduct studies on the model’s scale,
demonstrating that increasing the number of parameters
improves performance up to a certain point, after which
further increases result in decreased performance.

The attention mechanism and transformers have seen
significant use in recent end-to-end driving models, as they
enhance performance through improved reasoning when
combining information from multiple sources, which is
reflected in Fig. 17. Ablation studies by Interfuser, MAGNet,
and M2DA show the value of attention for their models’
driving performance.

Jaeger et al. demonstrate how using transformer decoders
for pooling features before waypoint decoding can better
retain spatial information, and lead to improved Route
Completion (RC) and less collisions with static objects.
Jia et al. [78] show how larger and more sophisticated
decoders lead to improved driving performance. Chen et al.
[51] show how iterative refinement for GRU decoders
improves driving performance.

4) TRAINING PARADIGM CHOICES
Imitation Learning (IL) currently outperforms Reinforcement
Learning (RL) by a significant margin. Additionally, there
have been very few RL implementations in the benchmarks

TABLE 10. Tonw05 Long results. DS : Driving Score | RC: Route
Completion | IP: Infraction Penalty. Methods with ‘‘∗’’ have been
evaluated by other papers and not by the paper itself. Since those
methods have been evaluated multiple times by others with varying
results, we choose to keep the highest evaluation and cite the paper that
obtained the evaluation in brackets ‘‘()’’. It should be noted that not all
methods use the same amount of training data.

provided by the tables (only IARL, CADRE, and GRI).
RL methods mainly shine in CARLA as experts, when they
have privileged access to the environment (e.g. Roach expert
[114] or Think2Drive [55]). There hasn’t been a sensorimotor
RL implementation with a DS above 40 in leaderboardv1,
Longest6, or Town05 Long. Roach only uses RL for its
expert; the sensorimotor model is trained using behavior
cloning.

B. LEADERBOARDV2
There is currently a big disparity between the highest DS
in leaderboardv1 and leaderboardv2. As explained by [55],
this is primarily due to factors such as much longer route
lengths, and significantly more complex scenarios. This
results in a much higher accumulation of infractions, causing
exponential decay in the Infraction Penalty (IP) due to
multiplicative penalty calculation. The authors of [61] and
[156] describe that the way the the DS is calculated makes
it so a reduction in the Infraction Penalty (IP) score does not
linearly correlate with an increase in Route Completion (RC).

VOLUME 12, 2024 146893

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

FIGURE 16. Plot showcasing the type of input modalities used and their
corresponding DS, based on data from Tables 7, 9, 10. Most
top-performing implementations use multi-modal sensor inputs.
High-scoring implementations that use cameras only are annotated.

Therefore, they demonstrate how the usage of a loophole
that stops the driving agent early before route completion
improves the DS by avoiding the accumulation of infractions.

Even if leaderboardv2’s route lengths were made shorter,
the complex scenarios that occur are still significantly more
difficult than leaderboardv1’s. Most expert methods imple-
mented for leaderboardv1 simply stop to avoid collisions.
This technique cannot deal with scenarios in leaderboardv2,
where overtaking maneuvers and exhibiting complex driving
behavior are necessary to progress towards the destination
goal.

X. CHALLENGES AND FUTURE DIRECTIONS
Beyond the considerations of safety, interpretability, and
robustness for autonomous driving, we explore more specific
challenges that could be tackled in future works.

A. HIGH-LEVEL COMMANDS VS TARGET POINTS
Intuitively, a human can drive around using only directional
instructions given by High-level Commands (HLCs). While
using Target Points (TPs) generally leads to an improvement
in the reviewed methods’ performance, they are currently

FIGURE 17. Plot showcasing the usage of the attention mechanism in
end-to-end models and the corresponding DS, based on data from
Tables 7, 9, 10. Most top-performing implementations use attention.
High-scoring implementations that do not use attention are annotated.

over-reliant on the GPS positional information this input pro-
vides [92]. Future driving models should be able to drive with
HLCs just as well. Since HLCs are commonly represented
with one-hot vectors that provide little information, using
language models can be promising to make HLCs richer with
linguistic semantics.

B. BEHAVIOR PLANNING
With the increased complexity of scenarios in leaderboardv2,
behavior planning and decision-making are essential to
handle complex situations and corner cases. Complex
situations require maneuvers such as overtaking, yielding,
or swerving away from incoming dynamic obstacles. Cur-
rently, maneuvers are directly implemented in expert models
through a rule-based formulation [148], or indirectly using
sampled trajectories [147] or reinforcement learning [55].
Imitation learning sensorimotor agents, on the other hand,
learn to maneuver implicitly by observing those expert
demonstrations. Barring collision avoidance heuristics [51],
[56], [82], [93] and high-level command inputs, imitation
learning models do not explicitly train on deciding what
maneuvers to execute. This is mainly due to the complexity

146894 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

of defining such a supervision target. Reasoning through
language holds promise in developing such decision making.
High-level commands as a prediction target [41], [51] can
also be an option to develop further and incorporate maneuver
decision-making in end-to-end models.

C. MOTION FORECASTING
Another essential component that is required to handle
complex scenarios is motion forecasting. Currently, most
sensorimotor agents leverage other agents’ trajectories from
training data to learn motion forecasting; the supervision
signal for training is exclusively derived from these trajec-
tories. While it is possible to learn multi-modal stochastic
predictions using those demonstrations, e.g., probabilistic
object density maps [56], [76], [77], [93], additional con-
strains and supervision labels need to be incorporated to
better model multi-modal trajectory probabilities. The LAV
model [51] uses HLCs to condition multi-modal trajectory
predictions, although they do not include a probabilistic
formulation to other agents’ stochasticity. An interesting
avenue to further explore is explicitly using cues from lane
and road networks’ geometry to predict other vehicles’
intent and trajectories. Previous works employed HD maps
to obtain vectorized lane data and used graph networks to
model interactions between agents and lanes for motion
forecasting [174], [175]. Similarly, Zhang et al. [75] used
VectorNet [103] to encode vectorized HDmaps for their end-
to-end CARLA implementation. The rasterized BEV map
auxiliary predictions used in many end-to-end models could
also be potentially processed in future works to explicitly
model road networks for improved motion forecasting in
end-to-end models.

D. EXPERTS
Evaluations provided in [148] show that the current best
experts do not surpass a Driving Score (DS) of 60 for
leaderboardv2, despite privileged perception from the sim-
ulator. Current rule-based experts rely on a simple action
repeat assumption using the kinematic bicycle model for
motion forecasting. This assumption might struggle to
forecast motion accurately with the increased complexity of
leaderboardv2, highlighting a need for more sophisticated
techniques. For instance, in highway scenarios, the kinematic
bicycle model fails to accurately model high-speed vehicle
dynamics, where factors like tire slip and momentum are
significant. Learning-based experts [55], [71], [146] on
the other hand, can potentially learn better forecasting
and world model predictions using data. However, they
might fail to handle scenarios that require sophisticated
lane-negotiation techniques [55], where rule-based experts
can categorize certain scenarios and hand-engineer rules to
tackle them. In general, both learning-based and rule-based
experts struggle with difficult merging scenarios found in
leaderboardv2 [55], [148]. Developing an improved expert
can be a valuable contribution to CARLA autonomous

driving research, as such an expert could also be used for data
collection and help improve future imitation learning models.
A hybrid rule-based and learning-based planner could be a
potential avenue to investigate.

E. DATASETS AND IMITATION LEARNING
The driving performance of imitation learning models
is heavily dependent on training datasets. As seen in
Section VIII, structuring and balancing datasets can lead to a
better training process and can consequently improve driving
performance. Dataset distillation [176] can be particularly
interesting for autonomous driving applications by creating
a synthesized dataset that retains only meaningful samples,
eliminating any redundant data. Developing techniques to
focus on difficult or safety-critical samples from the dataset to
improve sample efficiency, as shown by [142], is also worth
further exploration. Another possibility involves providing
denser information from data samples, as shown by Chen and
Krähenbühl [51] where they train motion planning using both
ego and other vehicles’ trajectories.

F. REINFORCEMENT LEARNING
Sensorimotor models based on imitation learning currently
outperform those that use reinforcement learning as the main
training paradigm.However, ILmodels lack explicit feedback
onwhat is good or bad driving behavior, contrary to RLwhere
feedback is achieved through rewards [177]. Ideally, an RL
model that learns to effectively evaluate state values can adapt
better to unseen situations. It can also potentially surpass
the performance upper bounds of expert demonstrations.
However, problems such as sample efficiency and designing
appropriate rewards [178] are significant challenges that
hold back RL from achieving its potential. Improvements in
model-based reinforcement learning and world models [55],
[110], [113] can improve data efficiency by allowing an
agent to learn through interactions with a latent ‘‘imagined’’
world instead of the simulator itself. Another possible
solution to improve sample efficiency can be found in
curriculum learning [179]. This training strategy can facilitate
the learning process by providing the learning agent with
easier tasks at the beginning, such as lane following and
simple turn scenarios [55], before progressively increasing
the complexity of tasks. Learning reward functions instead
of manually designing them [178], [180], e.g. inverse rein-
forcement learning, can also be worth further investigation.

G. CONTROLLERS
While it is understandable that controllers are not heavily
researched in the context of end-to-end autonomous driving
and deep learning, bad controller design can be detrimental
to driving performance. This is especially relevant in the
CARLA literature, where waypoints coupled with PID
controllers are very commonly used. Liang et al. [181]
show that simply tuning PID gains for the TCP baseline
can improve its performance. While most crashes observed

VOLUME 12, 2024 146895

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

during their experiments were attributed to poor trajectories
rather than control instability, they still advocate for the
potential benefits of more sophisticated control algorithms,
such as MPC [121], where end-to-end waypoint outputs
can be incorporated into the cost function. Classical control
theory is a well-established field that provides numerous tools
for autonomous driving control [182], and exploring these
methods could be valuable for improving end-to-end models’
robustness in complicated leaderboard scenarios.

Another potential avenue for control design lies in
learning-based control as part of a model’s end-to-end
architecture.Methods that used the dual control and trajectory
prediction from TCP (ThinkTwice [78], DriveAdapter [79],
MAGNet [117]) observed better performance with the
inclusion of learning-based control. Incorporating kinematic
feasibility and curvature continuity for output trajectories,
as done by the FAST model [72], could also simplify the
control task and is worth further study.

H. BENCHMARKS AND METRICS
The Driving Score (DS), Route Completion (RC), and
Infraction Penalty (IP) metrics that are commonly used in
CARLA benchmarks generally give a decent indication on
the quality of driving performance. However, they still have
drawbacks that need to be addressed to accurately reflect
what constitutes good driving. For instance, as explained
in Section IX-B, the exponential nature of the IP score
means that minor infractions over long routes can lead to
disproportionately large overall score penalties. This has led
to strategies that employ early stopping in leaderboardv2
to achieve a better DS [61], [156]. Alternative methods for
calculating the DS should be considered when designing
future benchmarks, in order to ensure reliable performance
assessment across varying route lengths, as in [55].

In the event that such benchmarks get solved, new
metrics will be needed to capture more nuanced aspects in
driving. For example, under the current metrics, an agent
might exhibit risky driving behavior—such as getting
uncomfortably close to pedestrians—yet still avoid collisions
and infractions, achieving a perfect score. Addressing this
requires developing metrics that assess risk, which ties into
motion forecasting research. Another metric to consider is
comfort, where factors such as longitudinal/lateral accelera-
tion and jerk should be accounted for in future work. Such
metrics will require a more refined approach to controller
design in end-to-end driving to handle the added constraints.

XI. CONCLUSION
In this survey, we have showcased several CARLA-based
autonomous driving end-to-end implementations and
explored various inputs, outputs, architectures, and training
techniques that were designed to tackle the challenges
posed by urban driving. We summarized reviewed methods
in a single table to provide a concise, comprehensive
overview. We introduced various official and community-
created benchmarks, and analysed results and evaluations of

the state-of-the-art. Finally, we discussed a few challenges
concerning CARLA and autonomous driving, and explored
potential avenues for future research.

REFERENCES
[1] S. Tsugawa, T. Yatabe, T. Hirose, and S. Matsumoto, ‘‘An automo-

bile with artificial intelligence,’’ in Proc. 6th Int. Joint Conf. Artif.
Intell. (IJCAI), San Francisco, CA, USA: Morgan Kaufmann, 1979,
pp. 893–895.

[2] D. A. Pomerleau, ‘‘ALVINN: An autonomous land vehicle in a neural
network,’’ in Proc. Adv. Neural Inf. Process. Syst., D. Touretzky, Ed.,
Burlington, MA, USA: Morgan-Kaufmann, 1988, pp. 1–11.

[3] L. Chen, Y. Li, C. Huang, B. Li, Y. Xing, D. Tian, L. Li, Z. Hu, X. Na,
Z. Li, S. Teng, C. Lv, J. Wang, D. Cao, N. Zheng, and F.-Y. Wang,
‘‘Milestones in autonomous driving and intelligent vehicles: Survey of
surveys,’’ IEEE Trans. Intell. Vehicles, vol. 8, no. 2, pp. 1046–1056,
Feb. 2023.

[4] H. Szűcs and J. Hézer, ‘‘Road safety analysis of autonomous vehicles:
An overview,’’ Periodica Polytechnica Transp. Eng., vol. 50, no. 4,
pp. 426–434, Aug. 2022.

[5] Road Traffic Injuries, Fact Sheet, World Health Organization, Geneva,
Switzerland, 2023.

[6] G. Baldini, Testing and Certification of Automated Vehicles Including
Cybersecurity and Artificial Intelligence Aspects, document Technical
Guidance KJ-NA-30472-EN-N, Scientific Analysis or Review, Antic-
ipation and Foresight, Publications Office of the European Union,
Luxembourg (Luxembourg), 2020.

[7] X. Hu, S. Li, T. Huang, B. Tang, R. Huai, and L. Chen, ‘‘How
simulation helps autonomous driving: A survey of sim2real, digital twins,
and parallel intelligence,’’ IEEE Trans. Intell. Vehicles, vol. 9, no. 1,
pp. 593–612, Jan. 2024.

[8] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, ‘‘CARLA:
An open urban driving simulator,’’ in Proc. 1st Annu. Conf. Robot Learn.,
vol. 78, S. Levine, V. Vanhoucke, and K. Goldberg, Eds., Nov. 2017,
pp. 1–16.

[9] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu,
A. Krishnan, Y. Pan, G. Baldan, and O. Beijbom, ‘‘NuScenes: A
multimodal dataset for autonomous driving,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 11618–11628.

[10] H. Caesar, ‘‘NuPlan: A closed-loop ML-based planning benchmark for
autonomous vehicles,’’ in Proc. CVPR ADP Workshop, 2021, pp. 1–5.

[11] A. Amini, T.-H. Wang, I. Gilitschenski, W. Schwarting, Z. Liu, S. Han,
S. Karaman, and D. Rus, ‘‘VISTA 2.0: An open, data-driven simulator
for multimodal sensing and policy learning for autonomous vehicles,’’ in
Proc. Int. Conf. Robot. Autom. (ICRA), May 2022, pp. 2419–2426.

[12] M. Althoff, M. Koschi, and S. Manzinger, ‘‘CommonRoad: Composable
benchmarks for motion planning on roads,’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 719–726.

[13] C. Gulino, ‘‘Waymax: An accelerated, data-driven simulator for large-
scale autonomous driving research,’’ in Proc. Neural Inf. Process. Syst.
Track Datasets Benchmarks, 2023, pp. 7730–7742.

[14] E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster, ‘‘Nocturne:
A scalable driving benchmark for bringing multi-agent learning one step
closer to the real world,’’ 2022, arXiv:2206.09889.

[15] P. S. Chib and P. Singh, ‘‘Recent advancements in end-to-end autonomous
driving using deep learning: A survey,’’ IEEE Trans. Intell. Vehicles,
vol. 9, no. 1, pp. 103–118, Jan. 2024.

[16] S. Teng, X. Hu, P. Deng, B. Li, Y. Li, Y. Ai, D. Yang, L. Li, Z. Xuanyuan,
F. Zhu, and L. Chen, ‘‘Motion planning for autonomous driving: The state
of the art and future perspectives,’’ IEEE Trans. Intell. Vehicles, vol. 8,
no. 6, pp. 3692–3711, Jun. 2023.

[17] L. Chen, P. Wu, K. Chitta, B. Jaeger, A. Geiger, and H. Li, ‘‘End-to-end
autonomous driving: Challenges and frontiers,’’ 2023, arXiv:2306.16927.

[18] D. Coelho and M. Oliveira, ‘‘A review of end-to-end autonomous driving
in urban environments,’’ IEEE Access, vol. 10, pp. 75296–75311, 2022.

[19] F. Codevilla, E. Santana, A. Lopez, and A. Gaidon, ‘‘Exploring the
limitations of behavior cloning for autonomous driving,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9328–9337.

[20] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. A. Sallab,
S. Yogamani, and P. Pérez, ‘‘Deep reinforcement learning for autonomous
driving: A survey,’’ IEEE Trans. Intell. Transp. Syst., vol. 23, no. 6,
pp. 4909–4926, Jun. 2022.

146896 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

[21] S. Hagedorn, M. Hallgarten, M. Stoll, and A. Condurache, ‘‘The
integration of prediction and planning in deep learning automated driving
systems: A review,’’ 2023, arXiv:2308.05731.

[22] Z. Yang, X. Jia, H. Li, and J. Yan, ‘‘LLM4Drive: A survey of large
language models for autonomous driving,’’ 2023, arXiv:2311.01043.

[23] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numerische Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[24] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[25] H. Bast, D. Delling, A. Goldberg, M. Müller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. F. Werneck, ‘‘Route planning in
transportation networks,’’ in Algorithm Engineering. Cham, Switzerland:
Springer, 2016, pp. 19–80.

[26] B. Paden, M. Cáp, S. Z. Yong, D. Yershov, and E. Frazzoli, ‘‘A survey of
motion planning and control techniques for self-driving urban vehicles,’’
IEEE Trans. Intell. Vehicles, vol. 1, no. 1, pp. 33–55, Mar. 2016.

[27] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[28] CARLA. Carla Leaderboard. Accessed: Jun. 11, 2024. [Online].
Available: https://leaderboard.carla.org/leaderboard/

[29] I. Gog, S. Kalra, P. Schafhalter, M. A. Wright, J. E. Gonzalez, and
I. Stoica, ‘‘Pylot: A modular platform for exploring latency-accuracy
tradeoffs in autonomous vehicles,’’ in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2021, pp. 8806–8813.

[30] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[31] T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, and J. Peters,
‘‘An algorithmic perspective on imitation learning,’’ Found. Trends
Robot., vol. 7, nos. 1–2, pp. 1–179, 2018.

[32] A. Y. Ng and S. Russell, ‘‘Algorithms for inverse reinforcement learning,’’
in Proc. Int. Conf. Mach. Learn. (ICML), 2000, pp. 663–670.

[33] P. Abbeel and A. Y. Ng, ‘‘Apprenticeship learning via inverse reinforce-
ment learning,’’ in Proc. 21st Int. Conf. Mach. Learn. (ICML), 2004, p. 1.

[34] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, ‘‘Maximum
entropy inverse reinforcement learning,’’ in Proc. 23rd AAAI Conf. Artif.
Intell., Chicago, IL, USA, vol. 8, Jul. 2008, pp. 1433–1438.

[35] J. Ho and S. Ermon, ‘‘Generative adversarial imitation learning,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2016, pp. 1–11.

[36] I. J. Goodfellow, ‘‘Generative adversarial networks,’’ Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[37] T.Wang, E. Xie, R. Chu, Z. Li, and P. Luo, ‘‘DriveCoT: Integrating chain-
of-thought reasoning with end-to-end driving,’’ 2024, arXiv:2403.16996.

[38] J. Zhang, Z. Huang, A. Ray, and E. Ohn-Bar, ‘‘Feedback-guided
autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2024, pp. 15000–15011.

[39] W.Wang, J. Xie, C. Hu, H. Zou, J. Fan,W. Tong, Y.Wen, S.Wu, H. Deng,
Z. Li, H. Tian, L. Lu, X. Zhu, X. Wang, Y. Qiao, and J. Dai, ‘‘DriveMLM:
Aligning multi-modal large language models with behavioral planning
states for autonomous driving,’’ 2023, arXiv:2312.09245.

[40] P. Wu, L. Chen, H. Li, X. Jia, J. Yan, and Y. Qiao, ‘‘Policy pre-training for
autonomous driving via self-supervised geometric modeling,’’ in Proc.
Int. Conf. Learn. Represent., 2023, pp. 1–9.

[41] J. Zhang, Z. Huang, and E. Ohn-Bar, ‘‘Coaching a teachable student,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2023, pp. 7805–7815.

[42] S. Hu, L. Chen, P. Wu, H. Li, J. Yan, and D. Tao, ‘‘ST-P3: End-to-end
vision-based autonomous driving via spatial–temporal feature learning,’’
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2022, pp. 533–549.

[43] P. Hu, A. Huang, J. Dolan, D. Held, and D. Ramanan, ‘‘Safe local
motion planning with self-supervised freespace forecasting,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 12727–12736.

[44] M. Mueller, A. Dosovitskiy, B. Ghanem, and V. Koltun, ‘‘Driving policy
transfer via modularity and abstraction,’’ inProc. 2nd Conf. Robot Learn.,
vol. 87, 2018, pp. 1–15.

[45] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy, ‘‘End-
to-end driving via conditional imitation learning,’’ in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2018, pp. 4693–4700.

[46] E. Ohn-Bar, A. Prakash, A. Behl, K. Chitta, and A. Geiger, ‘‘Learning
situational driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2020, pp. 11293–11302.

[47] A. Zhao, T. He, Y. Liang, H. Huang, G. Van den Broeck, and S. Soatto,
‘‘SAM: Squeeze-and-mimic networks for conditional visual driving
policy learning,’’ in Proc. Conf. Robot Learn., 2021, pp. 156–175.

[48] D. Chen, B. Zhou, V. Koltun, and P. Krähenbühl, ‘‘Learning by cheating,’’
in Proc. Conf. Robot Learn., 2020, pp. 66–75.

[49] M. Toromanoff, E. Wirbel, and F. Moutarde, ‘‘End-to-end model-free
reinforcement learning for urban driving using implicit affordances,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 7151–7160.

[50] W. G. Najm, J. D. Smith, M. Yanagisawa, and J. A. Volpe, ‘‘Pre-crash
scenario typology for crash avoidance research,’’ National Highway
Traffic Safety Administration, Washington, DC, USA, Tech. Rep. DOT-
VNTSC-NHTSA-06-02, Apr. 2007.

[51] D. Chen and P. Krähenbühl, ‘‘Learning from all vehicles,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022,
pp. 17201–17210.

[52] K. Chitta, A. Prakash, and A. Geiger, ‘‘NEAT: Neural attention fields for
end-to-end autonomous driving,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. (ICCV), Oct. 2021, pp. 15773–15783.

[53] A. Prakash, K. Chitta, and A. Geiger, ‘‘Multi-modal fusion transformer
for end-to-end autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 7073–7083.

[54] K. Chitta, A. Prakash, B. Jaeger, Z. Yu, K. Renz, and A. Geiger, ‘‘Trans-
Fuser: Imitation with transformer-based sensor fusion for autonomous
driving,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 11,
pp. 1–18, Aug. 2022.

[55] Q. Li, X. Jia, S. Wang, and J. Yan, ‘‘Think2Drive: Efficient reinforcement
learning by thinking in latent world model for quasi-realistic autonomous
driving (in CARLA-v2),’’ 2024, arXiv:2402.16720.

[56] H. Shao, L. Wang, R. Chen, S. L. Waslander, H. Li, and Y. Liu,
‘‘ReasonNet: End-to-end driving with temporal and global reasoning,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2023, pp. 13723–13733.

[57] X. Jia, Z. Yang, Q. Li, Z. Zhang, and J. Yan, ‘‘Bench2Drive: Towards
multi-ability benchmarking of closed-loop end-to-end autonomous
driving,’’ 2024, arXiv:2406.03877.

[58] U. Müller, J. Ben, E. Cosatto, B. Flepp, and Y. Cun, ‘‘Off-road obstacle
avoidance through end-to-end learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., vol. 18, Y. Weiss, B. Schölkopf, and J. Platt, Eds.,
Cambridge, MA, USA: MIT Press, 2005, pp. 1–11.

[59] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Müller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, ‘‘End to end learning for self-driving cars,’’ 2016,
arXiv:1604.07316.

[60] P. D. Haan, D. Jayaraman, and S. Levine, ‘‘Causal confusion in
imitation learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 11698–11709.

[61] K. Renz, L. Chen, A.-M.Marcu, J. Hünermann, B. Hanotte, A. Karnsund,
J. Shotton, E. Arani, and O. Sinavski, ‘‘CarLLaVA: Vision language
models for camera-only closed-loop driving,’’ 2024, arXiv:2406.10165.

[62] J. Mei, Y. Ma, X. Yang, L. Wen, X. Cai, X. Li, D. Fu, B. Zhang, P. Cai,
M. Dou, B. Shi, L. He, Y. Liu, and Y. Qiao, ‘‘Continuously learning,
adapting, and improving: A dual-process approach to autonomous
driving,’’ 2024, arXiv:2405.15324.

[63] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16x16 words:
Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[64] J. Zhang, J. Huang, S. Jin, and S. Lu, ‘‘Vision-language models for vision
tasks: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 8,
pp. 5625–5644, Aug. 2024.

[65] A. Radford, ‘‘Learning transferable visual models from natural language
supervision,’’ in Proc. Int. Conf. Mach. Learn., vol. 139, 2021,
pp. 8748–8763.

[66] R. Chekroun, M. Toromanoff, S. Hornauer, and F. Moutarde, ‘‘GRI: Gen-
eral reinforced imitation and its application to vision-based autonomous
driving,’’ 2021, arXiv:2111.08575.

[67] Y. Zhao, ‘‘CADRE: A cascade deep reinforcement learning framework
for vision-based autonomous urban driving,’’ in Proc. AAAI Conf. Artif.
Intell., 2022, pp. 3481–3489.

[68] J. Wang, H. Sun, and C. Zhu, ‘‘Vision-based autonomous driving:
A hierarchical reinforcement learning approach,’’ IEEE Trans. Veh.
Technol., vol. 72, no. 9, pp. 11213–11226, Jun. 2023.

VOLUME 12, 2024 146897

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

[69] A. Behl, K. Chitta, A. Prakash, E. Ohn-Bar, and A. Geiger, ‘‘Label
efficient visual abstractions for autonomous driving,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Oct. 2020, pp. 2338–2345.

[70] S. Teng, L. Chen, Y. Ai, Y. Zhou, Z. Xuanyuan, and X. Hu, ‘‘Hierarchical
interpretable imitation learning for end-to-end autonomous driving,’’
IEEE Trans. Intell. Vehicles, vol. 8, no. 1, pp. 673–683, Jan. 2023.

[71] K. Renz, K. Chitta, O.-B. Mercea, A. S. Koepke, Z. Akata, and
A. Geiger, ‘‘PlanT: Explainable planning transformers via object-
level representations,’’ in Proc. Conf. Robotic Learn. (CoRL), 2022,
pp. 459–470.

[72] W. Chen, Y. Chen, S. Wang, F. Kong, X. Zhang, and H. Sun, ‘‘Motion
planning using feasible and smooth tree for autonomous driving,’’ IEEE
Trans. Veh. Technol., vol. 73, no. 5, pp. 6270–6282, May 2024.

[73] N. Rhinehart, R. McAllister, and S. Levine, ‘‘Deep imitative models for
flexible inference, planning, and control,’’ 2018, arXiv:1810.06544.

[74] N. Rhinehart, R. Mcallister, K. Kitani, and S. Levine, ‘‘PRECOG:
PREdiction conditioned on goals in visual multi-agent settings,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 2821–2830.

[75] Q. Zhang, M. Tang, R. Geng, F. Chen, R. Xin, and L. Wang, ‘‘MMFN:
Multi-modal-fusion-net for end-to-end driving,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Oct. 2022, pp. 8638–8643.

[76] Y. Sun, X. Wang, Y. Zhang, J. Tang, X. Tang, and J. Yao, ‘‘Inter-
pretable end-to-end driving model for implicit scene understanding,’’
in Proc. IEEE 26th Int. Conf. Intell. Transp. Syst. (ITSC), Sep. 2023,
pp. 2874–2880.

[77] D. Xu, H. Li, Q. Wang, Z. Song, L. Chen, and H. Deng, ‘‘M2DA: Multi-
modal fusion transformer incorporating driver attention for autonomous
driving,’’ 2024, arXiv:2403.12552.

[78] X. Jia, P. Wu, L. Chen, J. Xie, C. He, J. Yan, and H. Li, ‘‘Think twice
before driving: Towards scalable decoders for end-to-end autonomous
driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2023, pp. 21983–21994.

[79] X. Jia, Y. Gao, L. Chen, J. Yan, P. Langechuan Liu, and H. Li,
‘‘DriveAdapter: Breaking the coupling barrier of perception and planning
in end-to-end autonomous driving,’’ in Proc. IEEE/CVF Int. Conf.
Comput. Vis. (ICCV), Oct. 2023, pp. 7919–7929.

[80] Y. Yan, Y. Mao, and B. Li, ‘‘SECOND: Sparsely embedded convolutional
detection,’’ Sensors, vol. 18, no. 10, p. 3337, Oct. 2018.

[81] Y. Zhou and O. Tuzel, ‘‘VoxelNet: End-to-end learning for point cloud
based 3D object detection,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 4490–4499.

[82] J. Fu, Y. Shen, Z. Jian, S. Chen, J. Xin, and N. Zheng, ‘‘InteractionNet:
Joint planning and prediction for autonomous driving with transformers,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2023,
pp. 9332–9339.

[83] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, and O. Beijbom,
‘‘PointPillars: Fast encoders for object detection from point clouds,’’
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 12689–12697.

[84] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, ‘‘PointNet: Deep
learning on point sets for 3D classification and segmentation,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 77–85.

[85] L. Rosero, J. Silva, D. Wolf, and F. Osório, ‘‘CNN-planner: A neural
path planner based on sensor fusion in the bird’s eye view representation
space for mapless autonomous driving,’’ in Proc. Latin Amer. Robot.
Symp. (LARS), Brazilian Symp. Robot. (SBR), Workshop Robot. Educ.
(WRE), Oct. 2022, pp. 181–186.

[86] L. A. Rosero, I. P. Gomes, J. A. R. da Silva, C. A. Przewodowski,
D. F. Wolf, and F. S. Osório, ‘‘Integrating modular pipelines with end-
to-end learning: A hybrid approach for robust and reliable autonomous
driving systems,’’ Sensors, vol. 24, no. 7, p. 2097, Mar. 2024.

[87] A. Geiger, M. Roser, and R. Urtasun, ‘‘Efficient large-scale stereo
matching,’’ in Proc. Asian Conf. Comput. Vis. (ACCV), 2010, pp. 25–38.

[88] T. Yin, X. Zhou, and P. Krähenbühl, ‘‘Center-based 3D object detection
and tracking,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 11779–11788.

[89] S. Vora, A. H. Lang, B. Helou, and O. Beijbom, ‘‘PointPainting:
Sequential fusion for 3D object detection,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 4603–4611.

[90] J. Philion and S. Fidler, ‘‘Lift, splat, shoot: Encoding images from
arbitrary camera rigs by implicitly unprojecting to 3D,’’ in Proc. 16th
Eur. Conf. Comput. Vis., Aug. 2020, pp. 194–210.

[91] B. Jaeger, ‘‘Expert drivers for autonomous driving,’’ M.S. the-
sis, Mathematisch-Naturwissenschaftliche Fakultät, Wilhelm-Schickard-
Institut für Informatik, Tübingen, Germany, 2021.

[92] B. Jaeger, K. Chitta, and A. Geiger, ‘‘Hidden biases of end-to-end driving
models,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2023,
pp. 8206–8215.

[93] H. Shao, L. Wang, R. Chen, H. Li, and Y. Liu, ‘‘Safety-enhanced
autonomous driving using interpretable sensor fusion transformer,’’ in
Proc. Conf. Robot Learn., 2023, pp. 726–737.

[94] Y. Xiao, F. Codevilla, A. Gurram, O. Urfalioglu, and A. M. López,
‘‘Multimodal end-to-end autonomous driving,’’ IEEE Trans. Intell.
Transp. Syst., vol. 23, no. 1, pp. 537–547, Jan. 2022.

[95] P. Polack, F. Altché, B. d’Andréa-Novel, and A. de La Fortelle, ‘‘The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?’’ in Proc. IEEE Intell. Vehicles
Symp. (IV), Jun. 2017, pp. 812–818.

[96] E. A. Wan and R. Van Der Merwe, ‘‘The unscented Kalman filter
for nonlinear estimation,’’ in Proc. IEEE Adapt. Syst. Signal Process.,
Commun., Control Symp., Oct. 2000, pp. 153–158.

[97] R. Van Der Merwe, Sigma-Point Kalman Filters for Probabilistic
Inference Dynamic State-Space Models. Portland, OR, USA: Oregon
Health & Science Univ., 2004.

[98] S. Yin, C. Fu, S. Zhao, K. Li, X. Sun, T. Xu, and E. Chen, ‘‘A survey on
multimodal large language models,’’ 2023, arXiv:2306.13549.

[99] C. Cui, ‘‘A survey on multimodal large language models for autonomous
driving,’’ in Proc. IEEE/CVFWinter Conf. Appl. Comput. Vis. Workshops
(WACVW), Jan. 2024, pp. 958–979.

[100] H. Shao, Y. Hu, L. Wang, G. Song, S. L. Waslander, Y. Liu, and
H. Li, ‘‘LMDrive: Closed-loop end-to-end driving with large language
models,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2024, pp. 15120–15130.

[101] D. Coelho, M. Oliveira, and V. Santos, ‘‘RLfOLD: Reinforcement
learning from online demonstrations in urban autonomous driving,’’ in
Proc. AAAI Conf. Artif. Intell., vol. 38, 2024, pp. 11660–11668.

[102] D. Coelho, M. Oliveira, and V. Santos, ‘‘RLAD: Reinforcement learning
from pixels for autonomous driving in urban environments,’’ IEEE Trans.
Autom. Sci. Eng., pp. 1–9, 2004.

[103] J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, and C. Schmid,
‘‘VectorNet: Encoding HD maps and agent dynamics from vectorized
representation,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11522–11530.

[104] Z. Rao, Y. Cai, H. Wang, Y. Lian, Y. Zhong, L. Chen, and Y. Li,
‘‘Enhancing autonomous driving: A low-cost monocular end-to-end
framework with multi-task integration and temporal fusion,’’ IEEE Trans.
Intell. Vehicles, pp. 1–14, 2024.

[105] C. Wen, J. Lin, T. Darrell, D. Jayaraman, and Y. Gao, ‘‘Fighting copycat
agents in behavioral cloning from observation histories,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 2564–2575.

[106] D.Wang, C. Devin, Q.-Z. Cai, P. Krähenbühl, and T. Darrell, ‘‘Monocular
plan view networks for autonomous driving,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst. (IROS), Nov. 2019, pp. 2876–2883.

[107] Z. Li, T. Motoyoshi, K. Sasaki, T. Ogata, and S. Sugano, ‘‘Rethinking
self-driving: Multi-task knowledge for better generalization and accident
explanation ability,’’ 2018, arXiv:1809.11100.

[108] K. Ishihara, A. Kanervisto, J. Miura, and V. Hautamäki, ‘‘Multi-task
learning with attention for end-to-end autonomous driving,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2021, pp. 2896–2905.

[109] I. Kim, H. Lee, J. Lee, E. Lee, and D. Kim, ‘‘Multi-task learning with
future states for vision-based autonomous driving,’’ in Proc. Asian Conf.
Comput. Vis. (ACCV), Nov. 2020, pp. 654–669.

[110] D. Chen, V. Koltun, and P. Krähenbühl, ‘‘Learning to drive from a world
on rails,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 15570–15579.

[111] Y. Xiao, F. Codevilla, D. Porres, and A. M. Lopez, ‘‘Scaling vision-
based end-to-end driving with multi-view attention learning,’’ 2023,
arXiv:2302.03198.

[112] C. M. Bishop, ‘‘Mixture density networks,’’ Aston Univ., Birmingham,
U.K., Working Paper NCRG/94/004, 1994.

[113] D. Ha and J. Schmidhuber, ‘‘Recurrent world models facilitate policy
evolution,’’ in Proc. Adv. Neural Inf. Process. Syst., 2018, pp. 1–11.

146898 VOLUME 12, 2024

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

[114] Z. Zhang, A. Liniger, D. Dai, F. Yu, and L. Van Gool, ‘‘End-to-end urban
driving by imitating a reinforcement learning coach,’’ in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2021, pp. 15202–15212.

[115] G. Hinton, O. Vinyals, and J. Dean, ‘‘Distilling the knowledge in a neural
network,’’ 2015, arXiv:1503.02531.

[116] P. Wu, X. Jia, L. Chen, J. Yan, H. Li, and Y. Qiao, ‘‘Trajectory-guided
control prediction for end-to-end autonomous driving: A simple yet
strong baseline,’’ in Proc. NeurIPS, 2022, pp. 6119–6132.

[117] S. Azam and V. Kyrki, ‘‘Multi-task adaptive gating network for trajectory
distilled control prediction,’’ IEEE Robot. Autom. Lett., vol. 9, no. 5,
pp. 4862–4869, May 2024.

[118] A. Hu, ‘‘Model-based imitation learning for urban driving,’’ in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), 2022, pp. 20703–20716.

[119] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, ‘‘Learning phrase representations using
rnn encoder–decoder for statistical machine translation,’’ 2014,
arXiv:1406.1078.

[120] K. Heong Ang, G. Chong, and Y. Li, ‘‘PID control system analysis,
design, and technology,’’ IEEE Trans. Control Syst. Technol., vol. 13,
no. 4, pp. 559–576, Jul. 2005.

[121] E. Carlos Garcia, D. M. Prett, and M. Morari, ‘‘Model predictive control:
Theory and practice-A survey,’’ Automatica, vol. 25, no. 3, pp. 335–348,
May 1989.

[122] R.Hartley andA.Zisserman,Multiple ViewGeometry in Computer Vision,
2nd ed., Cambridge, U.K.: Cambridge Univ. Press, 2004.

[123] D. Eigen, C. Puhrsch, and R. Fergus, ‘‘Depth map prediction from a
single image using a multi-scale deep network,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 2366–2374.

[124] P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and G. Cottrell,
‘‘Understanding convolution for semantic segmentation,’’ in Proc. IEEE
Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2018, pp. 1451–1460.

[125] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, ‘‘DeepDriving: Learning
affordance for direct perception in autonomous driving,’’ in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 2722–2730.

[126] A. Sauer, N. Savinov, and A. Geiger, ‘‘Conditional affordance learning
for driving in urban environments,’’ in Proc. Conf. Robot Learn., 2018,
pp. 237–252.

[127] A. Mehta, A. Subramanian, and A. Subramanian, ‘‘Learning end-to-end
autonomous driving using guided auxiliary supervision,’’ in Proc. 11th
Indian Conf. Comput. Vis., Graph. Image Process., Dec. 2018, pp. 1–8.

[128] S. Ettinger, S. Cheng, B. Caine, C. Liu, H. Zhao, S. Pradhan, Y. Chai,
B. Sapp, C. Qi, Y. Zhou, Z. Yang, A. Chouard, P. Sun, J. Ngiam,
V. Vasudevan, A. McCauley, J. Shlens, and D. Anguelov, ‘‘Large scale
interactive motion forecasting for autonomous driving: The Waymo open
motion dataset,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 9690–9699.

[129] J. Zhang and E. Ohn-Bar, ‘‘Learning by watching,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021,
pp. 12706–12716.

[130] Baidu Apollo Team. Apollo: Open Source Autonomous Driving.
Accessed: Feb. 11, 2019. [Online]. Available: https://github.com/
ApolloAuto/apollo

[131] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[132] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 6000–6010.

[133] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, ‘‘Deformable
DETR: Deformable transformers for end-to-end object detection,’’ 2020,
arXiv:2010.04159.

[134] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, ‘‘End-to-end object detection with transformers,’’ in Proc.
Eur. Conf. Comput. Vis.Cham, Switzerland: Springer, 2020, pp. 213–229.

[135] H. A. Mallot, H. H. Bülthoff, J. J. Little, and S. Bohrer, ‘‘Inverse
perspective mapping simplifies optical flow computation and obstacle
detection,’’ Biol. Cybern., vol. 64, no. 3, pp. 177–185, Jan. 1991.

[136] S.Woo, J. Park, J.-Y. Lee, and I. S. Kweon, ‘‘CBAM: Convolutional block
attention module,’’ in Proc. Eur. Conf. Comput. Vis., Sep. 2018, pp. 3–19.

[137] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, ‘‘ECA-Net: Efficient
channel attention for deep convolutional neural networks,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11531–11539.

[138] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training
of deep bidirectional transformers for language understanding,’’ 2018,
arXiv:1810.04805.

[139] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, ‘‘Graph attention networks,’’ 2017, arXiv:1710.10903.

[140] X. Liang, T. Wang, L. Yang, and E. Xing, ‘‘CIRL: Controllable imitative
reinforcement learning for vision-based self-driving,’’ in Proc. 15th
Eur. Conf. Comput. Vis. (ECCV), Munich, Germany. Berlin, Germany:
Springer, Sep. 2018, pp. 604–620.

[141] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D.Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
In Yoshua Bengio and Yann LeCun, editors, in Proc. 4th Int. Conf. Learn.
Represent. (ICLR), San Juan, Puerto Rico, May 2016.

[142] A. Prakash, A. Behl, E. Ohn-Bar, K. Chitta, and A. Geiger, ‘‘Exploring
data aggregation in policy learning for vision-based urban autonomous
driving,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2020, pp. 11760–11770.

[143] S. Ross, G. Gordon, and D. Bagnell, ‘‘A reduction of imitation learning
and structured prediction to no-regret online learning,’’ in Proc. 14th Int.
Conf. Artif. Intell. Statist., 2011, pp. 627–635.

[144] J. Park, Y. Seo, C. Liu, L. Zhao, T. Qin, J. Shin, and T.-Y. Liu,
‘‘Object-aware regularization for addressing causal confusion in imitation
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 34. Red Hook, NY,
USA: Curran Associates, 2021, pp. 3029–3042.

[145] N. Hanselmann, K. Renz, K. Chitta, A. Bhattacharyya, and A. Geiger,
‘‘King: Generating safety-critical driving scenarios for robust imitation
via kinematics gradients,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV),
2022, pp. 335–352.

[146] A. Villaflor, B. Yang, H. Su, K. Fragkiadaki, J. Dolan, and J. Schneider,
‘‘Tractable joint prediction and planning over discrete behavior modes for
urban driving,’’ 2024, arXiv:2403.07232.

[147] W. Zhang, M. Elmahgiubi, K. Rezaee, B. Khamidehi, H. Mirkhani,
F. Arasteh, C. Li, M. Ahsan Kaleem, E. R. Corral-Soto, D. Sharma,
and T. Cao, ‘‘Analysis of a modular autonomous driving architecture:
The top submission to CARLA leaderboard 2.0 challenge,’’ 2024,
arXiv:2405.01394.

[148] J. Beißwenger, ‘‘PDM-lite: A rule-based planner for Carla leaderboard
2.0,’’ Univ. Tübingen, 2024. [Online]. Available: https://github.com/
OpenDriveLab/DriveLM/blob/DriveLM-CARLA/docs/report.pdf

[149] W. Zhang, P. Yadmellat, and Z. Gao, ‘‘Spatial optimization in spatio-
temporal motion planning,’’ in Proc. IEEE Intell. Vehicles Symp. (IV),
Jun. 2022, pp. 1248–1254.

[150] N. D. Ratliff, D. Silver, and J. A. Bagnell, ‘‘Learning to search: Functional
gradient techniques for imitation learning,’’ Auto. Robots, vol. 27, no. 1,
pp. 25–53, Jul. 2009.

[151] M. Treiber, A. Hennecke, and D. Helbing, ‘‘Congested traffic states
in empirical observations and microscopic simulations,’’ Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 62, no. 2,
pp. 1805–1824, Aug. 2000.

[152] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
‘‘Proximal policy optimization algorithms,’’ 2017, arXiv:1707.06347.

[153] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, ‘‘Mastering diverse
domains through world models,’’ 2023, arXiv:2301.04104.

[154] C. Shorten and T. M. Khoshgoftaar, ‘‘A survey on image data
augmentation for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48,
Dec. 2019.

[155] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, ‘‘On offline
evaluation of vision-based driving models,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), Sep. 2018, pp. 246–262.

[156] J. Beißwenger, ‘‘PDM-lite: A rule-based planner for carla leaderboard
2.0,’’ Univ. Tübingen, 2024. [Online]. Available: https://github.com/
OpenDriveLab/DriveLM/blob/DriveLM-CARLA/docs/report.pdf

[157] M. Laskey, J. Lee, R. Fox, A. Dragan, and K. Goldberg, ‘‘DART: Noise
injection for robust imitation learning,’’ in Proc. Conf. Robot Learn.,
2017, pp. 143–156.

[158] Q. Li, Z. Peng, and B. Zhou, ‘‘Efficient learning of safe driving policy via
human-AI copilot optimization,’’ in Proc. Int. Conf. Learn. Represent.,
2022, pp. 1–9.

[159] F. Mütsch, H. Gremmelmaier, N. Becker, D. Bogdoll, M. R. Zofka, and
J. M. Zöllner, ‘‘From model-based to data-driven simulation: Challenges
and trends in autonomous driving,’’ 2023, arXiv:2305.13960.

[160] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, ‘‘Asynchronous methods for deep
reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1928–1937.

VOLUME 12, 2024 146899

Y. A. Ozaibi et al.: End-to-End Autonomous Driving in CARLA: A Survey

[161] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger,
‘‘Deep reinforcement learning that matters,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 32, 2018, pp. 3207–3214.

[162] J. Hao, T. Yang, H. Tang, C. Bai, J. Liu, Z. Meng, P. Liu, and Z. Wang,
‘‘Exploration in deep reinforcement learning: From single-agent to
multiagent domain,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 35,
no. 7, pp. 1–21, Jul. 2023.

[163] M. Toromanoff, E. Wirbel, and F. Moutarde, ‘‘Is deep reinforcement
learning really superhuman on Atari? Leveling the playing field,’’ 2019,
arXiv:1908.04683.

[164] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, pp. 529–533, Feb. 2015.

[165] J. Fu, J. Liu, H. Tian, Y. Li, Y. Bao, Z. Fang, and H. Lu, ‘‘Dual attention
network for scene segmentation,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 3141–3149.

[166] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[167] E. Cetin, P. J. Ball, S. Roberts, and O. Celiktutan, ‘‘Stabilizing off-policy
deep reinforcement learning from pixels,’’ 2022, arXiv:2207.00986.

[168] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, ‘‘Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,’’ in Proc. Int. Conf. Mach. Learn., 2018, pp. 1861–1870.

[169] G. C. Karl Couto and E. A. Antonelo, ‘‘Generative adversarial imitation
learning for end-to-end autonomous driving on urban environments,’’ in
Proc. IEEE Symp. Ser. Comput. Intell. (SSCI), Dec. 2021, pp. 1–7.

[170] K. Lee, D. Isele, E. A. Theodorou, and S. Bae, ‘‘Spatiotemporal costmap
inference forMPC via deep inverse reinforcement learning,’’ IEEERobot.
Autom. Lett., vol. 7, no. 2, pp. 3194–3201, Apr. 2022.

[171] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
‘‘Large-scale cost function learning for path planning using deep
inverse reinforcement learning,’’ Int. J. Robot. Res., vol. 36, no. 10,
pp. 1073–1087, Sep. 2017.

[172] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
‘‘Designing network design spaces,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 10425–10433.

[173] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, ‘‘A
ConvNet for the 2020s,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2022, pp. 11966–11976.

[174] J. Wang, T. Ye, Z. Gu, and J. Chen, ‘‘LTP: Lane-based trajectory
prediction for autonomous driving,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 17134–17142.

[175] D. Sierra-Gonzalez, A. Paigwar, O. Erkent, and C. Laugier, ‘‘MultiLane:
Lane intention prediction and sensible lane-oriented trajectory forecast-
ing on centerline graphs,’’ in Proc. IEEE 25th Int. Conf. Intell. Transp.
Syst. (ITSC), Oct. 2022, pp. 3657–3664.

[176] S. Lei and D. Tao, ‘‘A comprehensive survey of dataset distillation,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 46, no. 1, pp. 17–32, Jan. 2024.

[177] Y. Lu, J. Fu, G. Tucker, X. Pan, E. Bronstein, R. Roelofs, B. Sapp,
B. White, A. Faust, S. Whiteson, D. Anguelov, and S. Levine, ‘‘Imitation
is not enough: Robustifying imitation with reinforcement learning for
challenging driving scenarios,’’ in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Oct. 2023, pp. 7553–7560.

[178] W. B. Knox, A. Allievi, H. Banzhaf, F. Schmitt, and P. Stone, ‘‘Reward
(Mis)design for autonomous driving,’’ Artif. Intell., vol. 316, Mar. 2023,
Art. no. 103829.

[179] Y. Bengio, J. Louradour, and R. Collobert, ‘‘Curriculum learning,’’ in
Proc. Int. Conf. Mach. Learn., Aug. 2009, pp. 41–48.

[180] J. Leike, D. Krueger, T. Everitt, M. Martic, V. Maini, and S. Legg,
‘‘Scalable agent alignment via reward modeling: A research direction,’’
2018, arXiv:1811.07871.

[181] W. Liang, P. R. Baldivieso, R. Drummond, and D. Shin, ‘‘Tuning the
feedback controller gains is a simple way to improve autonomous driving
performance,’’ 2024, arXiv:2402.05064.

[182] Q. Yao, Y. Tian, Q. Wang, and S. Wang, ‘‘Control strategies on path
tracking for autonomous vehicle: State of the art and future challenges,’’
IEEE Access, vol. 8, pp. 161211–161222, 2020.

YOUSSEF AL OZAIBI received the B.S. degree
in computer science from Universite Paris Cite,
Paris, France, in 2021, and the M.S. degree in
robotics from Sorbonne Universite, Paris, in 2023.
He is currently pursuing the Ph.D. degree in
autonomous vehicle motion planning with the
ECE Paris School of Engineering, LISV Labo-
ratory, Université de Versailles Paris-Saclay. His
research interests include motion planning, mobile
robotics, deep learning, and autonomous driving.

MANOLO DULVA HINA (Member, IEEE)
received the bachelor’s degree in computer engi-
neering from Mapua University (formerly Mapua
Institute of Technology), Manila, Philippines,
the master’s degree in computer science from
Concordia University, Montreal, Canada, the
Ph.D. degree in computer science from the
Université de Versailles St-Quentin-en-Yvelines,
in 2011, and the Ph.D. degree in engineering from
the Université du Quebec, École de Technologie

Supérieure, in 2010. He is currently working as an Associate Professor
of computer science with the ECE Paris School of Engineering. His
research interests include artificial intelligence, machine learning, intelligent
transportation, autonomous machines, multimodal computing, and formal
specification.

AMAR RAMDANE-CHERIF received the Ph.D.
degree from Pierre and Marie Curie University,
Paris, in 1998, and the HDR degree from the Uni-
versity of Versailles, in 2007. From 2000 to 2007,
he was an Associate Professor. Since 2008, he has
been a Full Professor with the LISV Laboratory,
Université de Versailles Paris-Saclay. His research
interests include software ambient intelligence,
semantic knowledge representation, modelling
of ambient environment, multimodal interaction

between person, machine and environment, fusion and fission of events,
ambient assistance, and software architecture. He is currently a member
of the Council Board of the Graduate School of Computer Science at the
Paris-Saclay University.

146900 VOLUME 12, 2024

